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Summary

Data is used in the process of model selection.
Not all data is important to predictions.

Most important is to identify how data will
used to test processes and to reduce the
influence of data that is unrelated.




Paleodata: inferences of past climate
change as recorded by fossils

* Reflects response to known forcings.

* Provides unique test for climate models ...
Gets away from problem of using same data
to test models as was used to develop them.

* Shows potential risks of a changing climate.
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Paleodata summary

* Climate models do ok reproducing broad
features of forced climate change.

* Questions remain concerning the nature of
observed abrupt transitions in climate.

* During the past 10 kyrs, there appears to be
significant power at millennial time scales
which can not be cleanly linked to known
forcings (Khider et al, 2014).




How observations fit into a Bayesian
probabilistic framework:

Bayesian inference
ppd(m1d)e< p(dim)p(m)

1

PPD(m d,, ., g(m)) x exp[—g ( g(m) - d(‘,,,_s.)T C.. (g(m) -d,, )} - prior(m)

Likelihood test statistic




Uncertainty of a model estimate
of a single observation

d, =x +E€,

X, = g(m)

m = model parameters

e ~N(0,0,)

1
p(a,’1 Im) = — exp




Uncertainty of a model estimate
of two correlated observations

1
c,.0, 27r(1—p2)

p(d,.d, % ,%,,m)= exp




Now consider the chi-squared
test statistic

The sum of k independent normal random variables

Sampling from the likelihood distribution provides a measure of those
choices of m that are consistent with the data given the uncertainties
in the data and the effective degrees of freedom in the data in the
same way that the chi-squared statistic tests a null hypothesis.




So the uncertainty
in the slope and
intercept when
fitting a line through
a set of points
depends on the
number of points,
and whether all the
errors in the data

are independent or
not.
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Probabilistic framework summary

* Climate data affects uncertainties through a test
statistic that is incorporated within the likelihood
function.

e Test statistics involve “degrees of freedom”
which is a measure of the independent bits of
information.

Major challenges remain in knowing how to
represent dependencies that exist within the
data we use to test the representation of climate
phenomena.




Irreducible error

* Refers to the gap that exists between a model
and data that no amount of tuning will eliminate.

e Sometimes referred to as “structural error” or
“model discrepancy”.

* Has the potential to throw off model calibration,
producing good results for the wrong reasons.




Climate Sensitivity as a Function of Model Skill
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Distance between different reanalysis products is similar
In size to any model and those products.

CCM3.10 |
/] CAM3.1
CCM3.10
CAM3.1
NCEP Total ERA40 NCEP ERA40

Shortwave radiation reaching surface



June — July model discrepancies with reanalysis data

shortwave reaching surface [Watts/mA2]
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June — July NCEP discrepancies with ERA40

shortwave reaching surface [Watts/mA2]
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June — July NCEP discrepancies with ERA40

relative humidity [percent]

300
400
500
600
700
800
1000 —
80°S 40°S 0° 40°N 80°N

300

100
90
80
70
60
50
40
30
20
10

400

500

600

700

800

900

1000
80°S 40°S 0° 40°N 80°N

300
400
500
600
700
800

=e8 ERA40 - NCEP

1000

80°S 40°S 0° 40°N 80°N



What to do about it?

Option 1: Add a discrepancy term to likelihood which is an additional unknown.
(Brynjarsdottir and O’Hagan 2014) ... very readable summary paper.

d=x+€ +0,
X, = g(m)
8, ~N(u,,04) ie. use Gaussian Process Model

e ~N(0,0)
(e s

p(dllm): I exp (xl d125x)
O N2rm X 20 )




What to do about it (2)7

Option 2: Scale the variance. (Jackson et al., 2007)

dl—x1+8x

X, = g(m)

£ ~N(0,16§)
S
S~gamma(oc,,3+E(m))

E(m) = cost function (i.e. log-likelihood)

( A 2 )
1 Stx, —d
pld; Im)= o N2 =P ()262 )
x \ X




Hierarchical Bayes strategy
to add in "hyper” parameter S

Using Bayes’ theorem we now have
p(m7 S|dobs) X l(dobs|m7 S)p(m)p(S)
A very important point from this last expression is that,

p(m|S, dops) o I(dgps|m, S)p(m)
x exp(—SE(m))p(m)

and

p(S|m7 dobs) X l(dobs|ma S)p(S)

Jackson et al. 2007




This implies that for each step we can iteratively generate a value of m
conditional on S and a value of S conditional on m in the following way:

1. To simulate m conditional on S, apply sampling algorithm for m but
just one iteration.

2. To simulate S conditional on m:

e For the informative gamma distribution, we have

p(S|m, dg,) S%e+a_lexp(—S[E(m) + B])

which results in a gamma distribution of parameters % + a and

E(m) + 8 where k. is the effective degrees of freedom determined
earlier.

e Repeat steps 1 and 2 several times until convergence is achieved.



Example about discrepancy term
using Gaussian Process Modeling
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Realizations

Realizations

Prior samples of discrepancy using Gaussian Process
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“In order to obtain a realistic extrapolation we need realistic prior
information about & ( - ), both in the range of the data and out to the
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control variable values that we wish to predict.”




Calibration of CAM3.1

e Jackson et al. 2007 and Jackson 2009

* Despite significant “irreducible errors™ get
reasonable calibration results.

— Model can not get all observations well at the
same time.

— Region calibration selected was “in the
middle” of competing constraints and similar
to where experts had wanted parameters
values to be.



Calibration of 15 parameters of CAM3.1 using 11 observational

products.
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log likelihood 2m Temp over land (Willmott)
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Irreducible error summary

Major problem for us.

Seems hopeless to formulate problem with a
discrepancy term that predicts how errors
evolve with future climate.

However calibration examples seem to
produce reasonable results relative to expert
opinion.

Clearly an area of study that needs more
attention.




Emergent constraints

* An emergent constraint can be used to
estimate errors in climate predictions using
only information about the errors in
simulating modern climate.

* Important as a way of establishing credibility
of climate model projection information.

* Not clear that we have found any (see next
Jife[5)




Emergent constraints of CMIP Archive

3 Fasullo and Trenberth 2012 b.  Sherwood et al., 2014
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It has been extremely difficult to identify what observables
matter to climate sensitivity.
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Single model predictors

Use Bayesian inference and stochastic sampling to
identify plausible alternatives to the standard
CAMS3.1 configuration. Determine what observables
predict its sensitivity. Try predictors on CMIP5
archive.

y



Bayesian expression for observational
constraints on parameter value selection

PPD(mld,,,.g(m)) xexp —%( g(m) - d(,,)_\‘)Y.C;f,iA\,c,( g(m)-d,, )| prior(m)

Likelihood test statistic



Generate an ensemble of plausible
CAMS3.1 parameter sets

Select 15 parameters important to clouds, convection,
and radiation in CAM3.1

Use Markov Chain Monte Carlo sampling to estimate
uncertainty distributions

 Sampling strategy: Multiple Very Fast Simulated
Annealing (MVFSA) (Jackson et al., 2004)

* 3336 4-year long integrations to estimate 15
dimensional joint probability distribution
Select 180 ensemble members that represent
uncertainty

Couple CAM3.1 to a slab ocean model and estimate
response to 2x CO2




NCAR Top “10 +” observational constraints

(Seasonal means, 30S to 30N, unless noted otherwise)

Land 2-m air temperature (Willmott)
Vertically averaged air temperature (ERA40)
Latent heat fluxes over ocean (WHOI)

Zonal winds at 300 mb (ERA40)

Longwave cloud forcing (CERES2)

Shortwave cloud forcing (CERES2)
Precipitation over land (GPCP)

Precipitation over ocean (GPCP)

Sea level pressure (ERA40)

10. Vertically averaged relative humidity (ERA40)
11. Global mean annual mean radiative balance (= 0.5 W/m?)

1.
2.
3.
4.
5.
6.
7.
8.
9.

12. Pacific ocean wind stress along equator




log likelihood frequency
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parameter distributions
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Equilibrium Climate Sensitivity
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Hattab et al. 2015 (in prep) Created a regression
model to identify what errors matter to CAM3.1

Climate Sensitivity

predictions.
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B predictor maps; Y =X +e,

Standardized Regression Coefficients: TREFHT
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lat

Standardized Regression Coefficients: PRECT

50 100 150 200 250 300 350
lon

Precipitation
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Spectacular failure

Use maps to predict climate sensitivity of CMIP5
archive.




Predicted
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Interpretation of failure

e CAM3.1/slab ocean model is not like other
models within CMIP5 archive.

 Parameter perturbations within CAM3.1 do
not create structures that can be useful to
predict other models.

y
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