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Global average temperature 1850-2014

Updated from Morice et al. 2012
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CMORPH OBS Precip Climo JJAS (2003—2006)
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PAST WEATHER & RMAINFALL
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4 km Topography (m)
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1871—2010 India Rain JJAS Anom (mm/day)

B Nino 3.4 JJAS SSTA < —0.5 standard deviation
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ECMWEF: Useful forecast range (days) for Europe (1980 — 2010)
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Record performance of the deterministic forecasting system. The useful
range of the deterministic forecasts for Europe reached its highest ever monthly
value in February 2010. Overall the performance has been consistently good
during 2010. The useful forecast range is determined by the time at which the
anomaly correlation for 500 hPa height operational forecasts at 12 UTC
reached 60%.
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ERA Forecast Verification

Anomaly Correlation of 500 hPa GPH, 20-90N

500hPa GEOPOTENTIAL

ANOMALY CORRELATION FORECAST
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ERA Forecast Verification
omaly Correlation of 500 hPa GPH, 20-90N
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Hypothesis

Models that simulate climatology “better”
make better predictions.

Definition: Fidelity refers to the degree to which the
climatology of the forecasts (including the mean and
variance) matches the observed climatology

(Fallacy of Model Democracy)

(Fallacy of the Assumption that Model Errors and Model Responses of
External Forcings (SST, GHG, etc.) are Uncorrelated)
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Climate Model Fidelity and Predictability

Relative Entropy: The relative entropy between two distributions, p,(x) and
p,(x), is defined as

R(p.p,)= ,‘-})1 log(‘p1 j dx (1)
rY })3

where the integral is a multiple integral over the range of the M-

dimensional vector x.

R(}’1P2)——10 | % ’+ It {21(2—1 iy )}'*"_,%(”1 —I ) = (”1 2) (2)

where Mjk is the mean of p,(x) in the kth season, representing the annual
cycle, 3j is the covariance matrix of p(x), assumed independent of season
and based on seasonal anomalies. The distribution of observed temperature
is appropriately identified with p,, and the distribution of model simulated
temperature with p,,.
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Climate Model Fidelity and Projections of Climate Change

J. Shukla, T. DelSole, M. Fennessy, J. Kinter and D. Paolino
Geophys. Research Letters, 33, doi10.1029/2005GL025579, 2006
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Model sensitivity versus model relative entropy for 13 IPCC AR4 models. Sensitivity is defined as the surface air temperature
change over land at the time of doubling of CO,. Relative entropy is proportional to the model error in simulating current climate.
Estimates of the uncertainty in the sensitivity (based on the average standard deviation among ensemble members for those
models for which multiple realizations are available) are shown as vertical error bars. The line is a least-squares fit to the values.



Fidelity vs. Skill
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Fidelity vs. Skill
DEMETER 1980-2001
Seasonal Forecasts

7 models, 4 initial conditions
Lead Time = 0 months

Fidelity and Skill are
related.

Models with poor
climatology tend to have
poor skill.

Models with better

climatology tend to have
better skill.

Courtesy of Tim DelSole



How Good are the Current Climate
Models?
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Annually & Zonally Averaged Reflected SW Radiation
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Bjorn Stevens, UCLA
World Modelling Summit, ECMWF, May 2008
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Annually & Zonally Averaged SW Radiation (AR4)
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» 101-106 W/m2 (Wild et al., survey)
» 107 W/m2 (Trenberth and Kiehl (ERBE)
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Hemispheric Temperature Difference over the Oceans
CMIP5 1950-2000
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Model Bias in JJAS — Precipitation
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Model Bias in JJAS — Precipitation
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Boreal Winter (DJF) Rainfall Variance in AGCMs
For Identical SST Forcing
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Example:
Monsoon Predictability and Prediction
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Predictability of Time Averages (Seasonal)
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Analysis of Variance: F as a measure of predictability
5 CGCMs, 46 years, 9 ensembles

Measure of predictability is

where

F for JJAS Precip in Meteo-France

For samples drawn independently from the same normal distribution, and
for Y =46 and E = 9, the 5% significance threshold of F is 1.40
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F for JUAS Precip in UK Met Office
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F-values for JJAS precip.
For 46-years and 9
ensemble members the
5% significance is F=1.4.
Gray color indicates not
statistically significant at
95% confidence interval.
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Observed and Forecast(IMD) All—India JJAS rainfall (% Normal)
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ENSO has large amplitude after the monsoon season:

to predict monsoon, we must predict ENSO first
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Correlation between NINO3 and All-India JJAS Rainfall

1960-2005
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Time lagged correlation between all-India JJAS Monsoon Rainfall and the NINO3
index during the period 1960-2005. The red hatching indicates the JJAS period, the
horizontal red dashed line indicates zero, and the grey shading indicates the 95%
confidence interval for the time lagged correlation.
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F values for JJUAS All-India Rainfall from ENSEMBLES
(46 years (1960-2005); Ens.=9)
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El Nino/Southern Oscillation
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1997 Diabatic Heating Anomaly (W/m?)

(Based on Observations)
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Example:
ENSO Prediction
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Forecasts of Nino3.4 from April 2014 IC
(Model Bias Removed)
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El Nino and the
Southern Oscillation

A Scientific Plan U.S. PartiCipati()n
A Research Strategy
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Dynamical Seasonal Prediction with
4 State-of-the-Art Coupled GCMs (1982-2010)

NOAA/NCEP: CFSV2 - 24 ENSEMBLE MEMBERS
NOAA/GFDL: CM2P1 - 10 ENSEMBLE MEMBERS
NASA/GSFC: GMAO -- 10 ENSEMBLE MEMBERS

NCAR/COLA, RSMAS: CCSM3 —6 ENSEMBLE MEEMBERS

All calculations performed on ensemble mean for JIAS



NMME JJAS 1982-2010 Mean SST
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JJAS SST (1982-2010)
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NMME 1 May ICS 1982-2010 Precipitation JJAS Mean Bias
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Forecasts of Nino3.4 from April 1987 IC
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—— Observed Nino3.4 Anomaly

— Model Forecast




Observed and Model Mean Annual Cycle of Nino3.4
for Different Initial Conditions

28 - 28 {GFDL
=N\ Vam
27 27 -
26 26 -
25 25
24 - | 24 - |

| | | | | | | | | | | |
Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct

— JanIC — ApriIC — JullC
— FebIC — May IC — Nov IC ——— Observed Nino3.4 Annual Cycle
— MarIC — JunIC — Dec IC

28 [NASA

24 1 24 -

| | | | | | | | | | |
Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct




SST Bias in 3 Month Forecasts (CFSv2), 1982-2008, 1.C. May, 1

Climatolagical SST Error of the CFSv2 hindcasts in August {lead month 3)

;, ~rrEen
d N '\ |

40N
ZON A
EQ B -
h T —— 9
205 |
1 1 4 1 1
¥ EOE 120E 180 120W EOW Q

-6 % -4 -3 -2-15-1-05-0202 0% 1 15 2 3 4 b ]

CFSv2 hindcasts (1982-2008)
Atmospheric and Land ICs : first 4 days in May (4 ensemble members), CFSR

Ocean ICs : NEMO reanalysis

Observation : daily NOAA Ol SST ver2




Statement

In spite of a million fold increase in the
computing power, and enhanced ocean
observations since TOGA, there has not been
any significant improvement in the
simulation of mean climate, and prediction of
short-term climate variability by climate
models.
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Forecasts of Nino3.4 from April 2014 IC
(Model Bias Removed)
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Observed Sea Surface Temperature (*C)
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Observed Sea Surface Temperature Anomalies (°C)

7-Day Average Centered on 27 May 2015



Forecasts of NINO3.4 SST Anomalies, Initialized May 2015
OBS 1 1 1 1 1
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Forecasts of NINO3.4 SST Anomalies, Initialized May 2015
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Skill in SST Anomaly Prediction for Nino3.4

A Puzzle: Although model biases are very large, bias corrected anomaly
predictions have useful skill.

DJF 1981/82 to AMJ 2004

15-member CFS reforecasts
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Examples of improved climate
simulation by global climate models with
higher numerical accuracy (high
resolution) and improved physics
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Towards a Hypothetical “Perfect” Model

Replicate the statistical properties of the past and present

observed climate
— Means, variances, covariances, and patterns of covariability

« Utilize this model to estimate the limits of predicting the
sequential evolution of climate variability

 Enhance predictive understanding with iterative process of:
Model development and validation €<-> Predictability <-> Prediction
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Monsoon Rainfall in Low Resolution Model

(a precipitation rate (b) Coupled model (2 degree)
- Climatology -

L JJA 2004 — [TRMM3B42]
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Monsoon Rainfall in High Resolution Model

(a) precipitation rate (b) precipitation rate
— JJA 2004 - [TRMM3B42] —JJA 2004— [ 7-km ]
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Oouchi et al. 2009: (a) Observed and (b) simulated precipitation rate over the Indo-China
monsoon region as June-July-August average (in units of mm day -1). The observed precipitation is from
TRMM _3B42, and the simulation is for 7km-mesh run.
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Geopotntial at 1000 hPa PV on 315K
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Surface Potential
pressure Vorticity

Courtesy of Palmer
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Blocking Frequency

Black: Reanalysis (ERA); Red: T 159; Blue: T 1279 (ECMWF)
(Higher Resolution Model Improves Simulation of Blocking Frequency)
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Minerva Ensemble Hindcast
SST Mean Bias After 7 Months

T319 SST Mean Bias: Nov. ICs (1982-2010) T639
— Leading 7 Months

T319 M15 T639_M15

-5 -3 —2 -1 —-0.5 0.5 1 2 3 5

Increasing Resolution Does Not Necessarily Improve Model Bias



Towards a Hypothetical “Perfect” Model

Replicate the statistical properties of the past and present

observed climate
— Means, variances, covariances, and patterns of covariability

« Utilize this model to estimate the limits of predicting the
sequential evolution of climate variability

 Enhance predictive understanding with iterative process of:
Model development and validation €<-> Predictability <-> Prediction




Predictive Understanding

Prediction Skill and Predictability as a Metric of Understanding

* To enhance predictive understanding, a vigorous,
collaborative, and simultaneous effort is needed for
model development, predictability research, and
seamless prediction of weather and climate.
Diagnostic evaluation and prediction must be an
iIntegral part of model development.

« Advances in NWP did not come by some major
theoretical or conceptual breakthrough; it came by
comprehensive, persistent, and simultaneous efforts
In prediction, model development and predictability
research by a team of qualified scientists.

(A similar effort for Dynamical Seasonal Prediction and Climate Change is lacking. )
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Challenges

Theoretical:

Enhance predictive understanding of Earth system (seamless weather/climate)
Limits of Predictability (NWP, MJO, ENSO, NAO, PDO, climate change)
Resolving processes explicitly (1 km global models) vs parameterizations
Initialization of coupled climate system

Institutional:

Sustained (10-20 years) computing and staff resources (~ 100 TF; ~ 500 staff)
Exceptional research staff — predictable career path

Effective collaboration — national/international

Education/training of new generation of scientists and software engineers
Management of Resources: (Model Czar vs Adv. Committee)
Fidelity of physical climate simulation vs complexity (biogeo. cycles)
Predictability/prediction of current climate vs future projections

Extremely high-res. short-term simulations vs low resolution long-term

Observational: Inadequate sustained climate observing system

(National efforts focused on IPCC: scenarios; model complexity)
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Challenges

Theoretical:

Enhance predictive understanding of Earth system
(seamless weather/climate)

Limits of predictability
(NWP, MJO, ENSO, NAO, PDO, droughts, climate change)

Resolving processes explicitly
(1 km global models vs parameterizations)

Initialization of coupled climate system for prediction
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Challenges

Institutional:

Sustained (10-20 years) computing and staff resources
(~ 100 PF; ~ 500 staff)

Exceptional research staff — predictable career path
Effective collaboration — national/international

Education/training of new generation of scientists and software
engineers
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Challenges

Management of Resources: (Model Czar vs Adv. Committee)

Fidelity of physical climate simulation vs complexity (biogeo. cycles)
Predictability/prediction of current climate vs future projections

Extremely high-res. short-term simulations vs low resolution long-term

Observational: Inadequate sustained climate observing system

(National efforts focused on IPCC: scenarios; model complexity)
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Challenges (USA)

 To develop multi-agency collaboration for model
development and climate prediction for the benefit of the
US and the global society.

- To enhance the status of climate modeling from “projects”
within different labs/centers to a national institution.

« To sustain research on modeling of physical, chemical,
and biological processes for kilometer scale global
models, data assimilation, numerical methods, and
adaptive grids etc.

(This will require hardware and software for ~1 million cores and ~1
billion threads, and an appropriate power supply.)
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Challenges (USA)

« Are national investments in climate modeling and prediction,
including appropriate infrastructure with sufficient computational
capacity and critical mass of qualified scientists, commensurate
with the impending threat of global climate change and the
expectations of society?

« Are predictions of regional climate change, including changes in
the statistics of extreme events and high-impact weather accurate
and reliable enough to develop adaptation, mitigation, and
geoengineering strategies?
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Challenges (USA)

 What should be the relative investments of scientific talent and
computing power in building high fidelity models of the physical
climate system for operational weather and climate prediction
versus running IPCC scenarios with low resolution and high
complexity models?

* How meaningful is the climate adaptation research if climate
models have large deficiency in simulating regional climate
variations (tracks of land falling hurricanes; extreme events)?
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A Possible Strategy for the
US Climate Modeling

(Inspired by the World Modeling Summit, 2008)

1. In addition to the existing agency based centers,
establish a ~100 petaflops national multi-agency

computing facility dedicated to climate, accessible to

national centers and universities.

2. A distributed multi-institutional model development and

data assimilation project for Earth System Prediction.
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A N ATIFTTO'N-APE=SEE R°A T-BRSsY"- F O R

ADVANCING

CLIMATE MODELING

Natlonal Research CounC|I 2012

Recommendation 11.1: ----- the United States should nurture
a unified weather-climate prediction system-----

----- the USGCRP, together with the major national climate and weather
modeling institutions, work toward defining a unified modeling strategy-----

Improved operational weather and climate prediction
Optimal utilization of (expensive) space observations
Science based adaptation to climate change




Seamless Prediction of Weather and Climate

From Cyclone Resolving Global Models
to
Cloud System Resolving Global Models

1. Planetary Scale Resolving Models (1970~): Ax~500Km
2. Cyclone Resolving Models (1980~): Ax~100-300Km
3. Mesoscale Resolving Models (1990~):  Ax~10-30Km

4. Cloud System Resolving Models (2000 ~):  Ax~3-5Km.)>

Organized Cloud Mesoscale Synoptic Planetary
Convection System System Scale Scale
Convective Climate
—_— —_—
gV L L cupW
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World Modelling Summit, ECMWF (6-9 May 2008).

Participants (~150) from all modelling centers of the world.

They say they
want arevolution

Climate scientists call for major new modelling facility. Article in Nature, May 2008

Researchars from around tha world

gathered inReading, UK, for the summet.
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Examples of Internationally Funded
Infrastructures for Advancement of Science

« CERN: European Organization for Nuclear Research (Geneva,
Switzerland)

 ITER: International Thermonuclear Experimental Reactor
(Gadarache, France)

« [SS: International Space Station
(somewhere in sky..)

WHAT ABOUT CLIMATE PREDICTION?
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The Hubble Space Telescope was built by the United States space agency NASA, with
contributions from the European Space Agency and is operated by the Space Telescope Science
Institute.




Comment: Forum

physicsworld.com

A CERN for climate change?

Providing reliable predictions of
the climate requires substantial
increases in computing power.
Tim Palmer argues thatitis time
for a multinational facility fit for
studying climate change

This winter has seen unprecedented levels
of travel chaos across Europe and the US. In
particular, the UK experienced the coldest
December temperatures on record, with
snow and ice causing many airports to close.
Indeed, George Osbourne, the UK’s Chan-
cellor of the Exchequer, attributed the coun-
try’s declining economy in the last quarter of
2010 to this bad weather. A perfectly sensi-
ble question to ask is whether this type of
weather will become more likely under cli-
mate change? Good question, but the trou-
ble is we do not know the answer with any
great confidence.

Trent Schindler, NASA/Goddard/UMBC

A global approach to a global problem Modelling the climate may require a unified strategy for computing.

In Physics World by Tim Palmer



Particle Accelerators for High Energy Physics Research

FermilLab
Batavia, IL, USA
Tevatron 980 GeV

CERN

SLAC

Geneva, DESY
Menlo Park, CA, USA Swit | d Hamburg, Germany
50 GeV witzerlian HERA, 920 GeV
LHC, 7 TeV

Brookhaven
Upton, NY USA
RHIC, 100-250 GeV
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Supercomputers for Weather, Climate
and Earth-System Research

ECMWEF
Europe
IBM 236 TFlops

Hadley Center and
Met Office
United Kingdom
IBM 104 TFlops

Max Planck
Germany
IBM 152 TFlops

Weather, Climate and
Earth-system CERN ??
100 PetaFlops (within
five years)

KMA
Korea
Cray 632 TFlops

GFDL/NOAA
USA
Cray 260 TFlops

NCAR
USA
IBM 77 TFlops

MRI
Japan
Hitachi 51 TFlops

NCEP
USA
IBM 146 TFlops

Old, pre-ACME slide
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Scientific/Political Domains of Climate Modeling Facilities

European/African node Asian/Australian node

American node
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Summary

* In spite of the k /3 spectrum, NWP history (~40 years) suggests:
Higher resolution models, improved physical parameterizations,
and data assimilation techniques reduced initial errors, and
increased the range of predictability.

e 35 years ago, Dynamical Seasonal Prediction (DSP) was not
conceivable; DSP has achieved a level of skill that is considered
useful for some societal applications. However, such successes
are limited to periods of large, persistent SST anomalies.

* There is significant unrealized seasonal predictability.
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Summary

* The most dominant obstacle in realizing the potential predictability of
short-term climate variations is inaccurate models, and unbalanced
initial conditions rather than an intrinsic limit of predictability.

(Models with higher fidelity have higher prediction skill.)

« A multi-institutional (multinational) enhanced research effort
and computational infrastructure is needed to develop the
next generation of high fidelity climate models for improved
climate predictions, utilization of space observations, and to
suggest policies and strategies for adaptation and mitigation.
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THANK YOU!

ANY QUESTIONS?
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CMIP3 MMM - GPCP
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Positive errors over South China Sea and

Maritime Continent persist throughout the

Annual Cycle

(Sperber, Annamalai et al. 2013)

(Courtesy Annamalai)

DJF - Precipitation

10N
EQ
10S 7
20S

30S

408 T
80E 100E




“US Climate Modeling”
(Climate Research Committee, 1998 NRC)

“USGCRP [US Global Change Research
Program| agencies do not have a coordinated
approach (to climate modeling).”

“There are few monetary resources dedicated to
high-end climate modeling.”

“A concentrated effort by the relevant agencies

is needed to establish a coordil}’ated national
strategy for climate modeling.
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“Improving the Effectiveness of US

Climate Modeling”
(Climate Research Committee, 2001 NRC)

“The panel concluded that the present research infrastructure
spread among many research agencies, each operating in its own
interests according to its own culture, is not capable of responding to
the modeling demands of regular assessment and prediction, nor is
the management structure of USGCRP able to instill such a culture

»

“The climate modeling community faces a severe shortage of

'y

qualified technical and scientific staff members.”
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“Restructuring Federal Climate Research to

Meet the Challenges of Climate Change”
(NRC Report, 2009)

“Develop the science base and infrastructure to
support a new generation of coupled Earth
system models to improve attribution and
prediction of high-impact regional weather and
climate ...~
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Physicists can get away with this!

“Paradoxically, the failures in simulations are
evidence for solid scientific success: Modeling has
progressed to the state where it can be wrong!”

Theoretical Challenges in Understanding Galaxy Evolution: Simulations of Dark
Matter Structure;

Jeremiah P. Ostriker and Thorsten Naab, August 2012 (Physics Today, pp. 43 - 49)
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Summary (2)

1. An unforced, multidecadal SST pattern can
explain major multi-decadal fluctuations in
global mean temperature in the 20" century.

2. Decadal warming trends of 0.1K/decade are
significant and uniform in the 20t" century;
the decadal cooling trends are not
statistically significant.
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CFSv2 Prediction skill of Nino3.4 SSTA (1982-2008)

Correlation (Feb, OISST)
1 l\
0.9 4
0.8 1
0.7 1
e Ensemble mean
' NEMO
0.5
..] GODAS
CFSR
0.3
0.2 Sensitivity to ocean initial conditions
015 i 2 3 7 3 5 7
February lead month

Multi-ocean analysis ensemble initialization (Zhu et al. 2012; 2013)

September



Global Warming Hiatus?

Global Land-Ocean Temperature (1880-2014) Relative to

1951-1980 mean

(GISS, New York)
Global Land—Ocean Temperature Index
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Natural Forcing Cannot Explain Obs. Global Temp. Trend
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Global-mean Surface Temperature
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On the Time-Varying Trend in Global-Mean Surface Temperature
by Huang, Wu, Wallace, Smoliak, Chen, Tucker
EEMD: Ensemble Empirical Mode Decomposition; MDV: Multi Decadal Variability

Figure 4: Reconstruction of the raw GST time series (brown lines) using ST only
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Leading Predictable Component (APT):

Internal Multi-decadal Pattern (IMP)
By = |
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A Hypothetical Physical Climate System
Model Development Team

Atmosphere Land and Cryosphere

* Dynamical core -5 * Soil & Soil Moisture -5
e Radiation (clear and cloudy) -8 * Vegetation -5
* Boundary Layer -5  Ground and Subsurface Water -5
e Shallow Convection -5

* Deep Convection - 10

e Stratosphere -5

* Cloud Processes -5

Ocean

* Dynamical Core -5

*  Mixing -5

* QOcean Eddies -5

* Boundary Currents -5

* Ocean-Atmosphere Interaction —-10
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El Nino/Southern Oscillation
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36 and 72 Hour Forecasts @ 500 MB over North America 2,

D ATMO SRy,
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NCEP Operational Forecast Skill D
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Predictability of ENSO and Monsoon

Estimates of predictability using:
— Analysis of Variance
— Classical (a la Lorenz) initial error growth

show high predictability;
Yet, prediction skills are quite low.
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1997 Diabatic Heating Anomaly (W/m?)

(Based on Observations)
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Challenges

(for Predictive Understanding)

Conceptual/Theoretical: ENSO an unstable oscillator or stochastically
forced, damped linear system? (50 years of data support both)

Modeling: Climate models have huge systematic errors; unable to simulate
variances and co-variances (unable to simulate annual cycle)

Observational: Inadequate sustained ocean observing system

Initialization: Lack of coupled ocean-atmosphere initialization

Computational: Unable to resolve organized convection

(National efforts focused on IPCC: scenarios; model complexity)
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DYNAMIC SEASONAL PREDICTION WITH 4 STATE-OF-THE-ART COUPLED GCMS
(NCEP/CFSV2, GFDL, NCAR, NASA)

ANALYZE 4 NMME (PHASE 1) COUPLED MODELS:
NCEP CFSV2 - 24 ENSEMBLE MEMBERS

GFDL CM2P1 - 10 ENSEMBLE MEMBERS

NASA GMAO - 10 ENSEMBLE MEMBERS

COLA RSMAS CCSM3 - 6 ENSEMBLE MEMBERS

1982-2010 FORECASTS INITIALIZED FROM 01 MAY OBSERVED
STATE OF EACH YEAR

ALL OUTPUT ANALYZED ON 1 DEGREE GRID VERSUS OBSERVATIONS:

NCEP CPC CMAP PRECIPITATION
NCDC OISST SEA SURFACE TEMPERATURE

All calculations performed on ensemble mean for JJAS

All India Rainfall: Average of Land Points



Analysis of Variance: F as a measure of predictability
5 CGCMs, 46 years, 9 ensembles

Measure of predictability is

~2

o
F=E_2

OnN

where
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For samples drawn independently from the same normal distribution, and
for Y =46 and E = 9, the 5% significance threshold of F is 1.40
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F for JJAS Precip in ECMWF
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