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The Earth system is one of the
most complex entities in science

We live in a highly non-linearly coupled Climate System
characterized by a range of spatial and temporal scales
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Climate change needs to be
simulated at multiple spatial scales
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Climate forcings act on multiple
temporal scales

Months Decades Centuries Millennia
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Range of Predictabllity for Different Phenomena
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The primary tools available today for simulating climate
change are Global Climate (System) Models (GCMs)

GCMs are numerical
representations on a
three-dimensional
grid of the
processes that
determine the
evolution of the
Earth’s climate




The equations of a climate model

Conservation
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Conservation
of energy

% LV - Vp=—pV -V Conservation
of mass

Physics

Conservation
of water

Equation of state




Transient Climate Change Simulation
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Intrinsic Uncertainties in Climate
Change Prediction:
Initial Conditions of the Climate System

* We do not know with good accuracy what
the initial conditions of the climate system
were at the beginning of the
“Industrialization Experiment”
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Intrinsic Uncertainties in Climate
Change Prediction:
Unpredictability of External Forcings

» Unpredictable Natural Forcings

* Unpredictable, or little predictable, anthropogenic
forcings (e.g. GHG and aerosol emissions, land-use

change)



Intrinsic Uncertainties in Climate
Change Prediction:
Unpredictability of External Forcings

« Development of scenarios rather than predictions of
forcings



Intrinsic Uncertainties in Climate Change
Prediction:
Non-linearities, Thresholds and Feedbacks
* Feedbacks within the climate system can

enhance its non-linearity and thus decrease
predictability

* Threshold behaviors also enhance nonlinearity
and decrease predictability



The Climate Change
Prediction Problem

Because of the internal variability and non-
linearity of the climate system, the presence of
feedbacks, and the random component of the

external natural and anthropogenic forcings,
the "actual” climate change is only one
(essentially unpredictable) realization within a
range of possible realizations, each
characterized by a certain likelihood to occur
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The Climate Change
Prediction Problem

The purpose of climate prediction is not
to predict what will be the exact climate
of the future, but to reconstruct as closely
as possible the PDF of possible future
climates. This implies that:

Climate change prediction needs to be
approached in a probabilistic way.



There are also many sources
of "added” uncertainty:

Imperfect knowledge of processes
Imperfect observations

Imperfect models

Imperfect analyses and approaches
And probably many more ...
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The uncertainty “dilemma”

 We need to characterize as much as possible the “intrinsic’
uncertainty

— Wide PDF

* But we need to reduce as much as possible the “added”
uncertainty

— Narrow PDF

* We do not have specific case studies to test our
anthropogenic climate change “predictions”, e.g. as in
weather and seasonal forecast, and as a result it is critical
to evaluate and possibly quantify their reliability

— Process understanding

— Model fidelity

— Seemless prediction

— Inter-model agreement

— Consistency with observed trends



Regional vs. Global Climate
Change Prediction

« Climate change prediction is more difficult at the
regional than the global scale
— Natural variability increases at finer scales, which

makes the extraction of the change signal from the
underlying noise more difficult



Observed Temperature Trend
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Sensitivity of interannual variability to spatial scale (Giorgi 2003)
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Precipitation change
Global Regional
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The “path” to regional climate change
may be important for impacts

Different paths to climate change




Regional vs. Global Climate
Change Prediction

« Climate change prediction is more difficult at the
regional than the global scale

— Changes in circulation structure, regimes and natural
climate modes are more important at the regional
scale: regional climate is more non-linear



PDF of 500 Hpa Height (Corti et al. 1999)
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Climate Change
can modify the
frequency and/or
structure of weather
regimes




Regional vs. Global Climate
Change Prediction

« Climate change prediction is more difficult at the
regional than the global scale

— Regional climates are affected by local scale forcings
and processes that are not adequately resolved by
global climate models (topography, landuse, aerosols,
extremes etc.)
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“Nested” Regional Climate Modeling:
Technique and Strategy

Motivation: The resolution of GCMs
Is still too coarse to capture regional

and local climate processes .
Technique:A “Regional Climate e\ S N
Model” (RCM) is “nested” within a p A _%ﬁ”’é“%&‘a‘\é
GCM in order to locally increase the Y o8 ’?’/I!\\\g\v .
model resolution. G|\ ‘l\\\\;,

; a"l; ‘ sy =

— Initial conditions (IC) and lateral
boundary conditions (LBC) for
the RCM are obtained from the
GCM (“One-way Nesting”) or
analyses of observations (perfect
LBC).

Strategy: The GCM simulates the
response of the general circulation to
the large scale forcings, the RCM
simulates the effect of sub-GCM-grid
scale forcings and provides fine
scale regional information

— Technique borrowed from NWP
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CORDEX Phase | experiment protocol

Model Evaluation Climate Projection
Framework Framework

AMIP Multiple regions (Initial focus on Africa)
like l 50 km grid spacing
Evaluation of present day

ERA-Interim LBC ) \
1989-2007 ﬁ GCM-driven climate runs

!
l / Scenarios (1951-2100)
RCP4.5, RCP8.5

Regional Analysis
Regional Databanks

Multiple driving AOGCMs
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A dynamical equilibrium
IS reached in the interior domain
between the information from
the LBC and the model solution
RCMs are not intended
to correct large scale
circulation errors in the driving

900 Hpa specific |

humidity
(Courtesy of
R. Laprise)




Added value of RCMs

Where to look for it?

Complex fine scale surface forcings:
Topography, coastlines, land surface gradients,
lakes/islands, etc.

Strong regional forcings: Aerosols

Precipitation intensity distributions and extreme
events

Regional circulations: sea breeze, slope
circulations

Synoptic scale and mesoscale processes:
tropical storms, mesoscale convectiove
processes, tropical convection

High quality, high resolution observations

are needed to assess added value



The case of the European Alps

(Torma, Giorgi, Coppola, JGR 2015)

* Area characterized by complex, fine scale
topographical features which strongly modulate local
climate characteristics

 Availablility of a high quality, high resolution gridded
dataset: EURO4M-APGD (Isotta et al. 2014)
— Daily precipitation gridded onto a 5 km regular grid
— Homogenized data from more than 8000 stations
— Long period of coverage: 1971-2008
 Availability of ensembles of RCM projections from
EURO-CORDEX and MED-CORDEX
— Multiple driving GCMs and nested RCMs
— Two nominal resolutions: 0.11°, 0.44°
— Easy accessible open data



Added value questions examined

* Do the RCMs improve the representation of given
present day precipitation statistics compared to the

driving GCMs?
— Downscaling to fine scales
— Upscaling to GCM-like scales

 |s the RCM climate change signal different from that
of the driving GCMs?

« Statistics examined:
— Spatial distribution of precipitation

— Daily precipitation intensity PDFs
— Daily precipitation intensity extremes



Added value metrics used

All data are intercompared on common grids of
different resolutions: 1.32°, 0.44°, 0.11°

— Historical period: 1976-2005

— Future period: 2070-2099

Spatial precipitation pattern: Taylor diagram
— Spatial correlation

— Spatial standard deviation
— Centered RMSE

Daily precipitation intensity PDF
— Kolmogorov-Smirnov (KS) Distance

Daily precipitation extremes: R95 (fraction of total
precipitation above the 95 percentile on an annual basis)

— Mean
— Correlation coefficient




Analysis grids (topography)
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Ensemble mean seasonal precipitation

(1976-2005)
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Taylor diagram of mean seasonal
precipitation (model vs. obs, 1976-2005
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Daily precipitation PDFs on different grids
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Ensemble mean KS distance for
different resolution grids (1976-2005)
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Ensemble mean R95 for
different resolution grids (1976-2005)
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Correlation between simulated and
observed R95 for different resolution grids
(1976-2005)
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Precip change [%] — JJA, GCM 1.32°
(2070-2099) - (1975-2004)
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Precip change — JJA, RegCM
(2070-2099)—(1975-2004)

Convective Precip change — JJA, RegCM
(2070-2099)—(1975-2004)

Non—convective Precip change — JJA, RegCM
(2070—2099)})—(1975—2004)
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Change in potential
instability index

Potential Instability Index change [°C] — JJA, RegCM 0.11°
(2070-2099)—(1975-2004)




Precip trend - JJA, GCM 1.32°
(1975-2004)

Precip trend — JJA, RCM 0.11°
(1975-2004)

Precip trend — JJA, EURO4AM—-APGD 5 km

(1975-2004)
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Cascade of uncertainty in climate change projections
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Cascade of uncertainty in climate change projections
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Climate Simulation Segment of the Uncertainty Cascade

Global Climate Change Simulation
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Model configuration uncertainty at the
global scale

Temperature change (°C)

Temperature change (°C)
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Model configuration uncertainty at
the regional scale (AOGCMSs)

Regional precipitation vs. temperature change

Mediterranean warm season West Africa monsoon season

S Eurcpe, N Africa, JJA, SRESAIB vs 20C3M Western Africa, JJA, SRESATB vs 20C3M
| | | | | | | | | 1 1 | | 1 | 1 | 1

on Change (pct)

Precipitation Change {pct)

40 ) ¥ X . 40 B0
Temperature Change (C) Temperature Change (C)

TS(mn,mx) = 2.6126, 6.4895 TS{mn,mx) = 1,4943, 4.6247
PR(mn,mx) = =53.237, -2.1439 PR(mn,mx) = —16.619, 16.24
AYG{ts,pr) = 4.3439, —24.845 AVG(ts,pr) = 3.217, 1.4677




Fraction of uncertainty explained by
different sources as a function of lead time

Internal variability  Hawkins and Sutton 2009
Scenario uncertainty




Climate Simulation Segment of the Uncertainty Cascade
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Uncertainties in regional climate change

projections: The PRUDENCE strategy

Impacts

Storm Surge
Agriculture

Scenarios Hydrology
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Sources of uncertainty in the simulation of temperature
and precipitation change (2071-2100 minus 1961-1990)

by the ensemble of PRUDENCE simulations (whole Europe)
(Note: the scenario range is about half of the full IPCC range, the GCM
range does not cover the full IPCC range) (Adapted from Deque et al. 2006)
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Precipitation trend 1990-2050
(AMMA PrOJect Paeth et al. 2011)

mm/50a




‘Large ensembles are needed to explore the uncertainty spacel
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Conclusions

Climate change prediction (or projection) is characterized
by an intrinsic uncertainty (to be fully characterized) and
by an added uncertainty due to deficiences in the
prediction process (to be minimized)

Because of this nature, climate prediction needs to be
approached in a probabilistic way

Uncertainties increase at the reqional to local scales

Large ensembles of simulations are needed in order to
fill the phase space of possible future climates (and
climate change paths) and to produce meaningful PDFs

Good criteria are needed to assess the reliability
(credibility) of climate change projections

A clear understanding of uncertainties and underlying
processes is critical
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