Geothermal projects: Exploration, Drilling, Plant, Exploitation, Operation& Maintenance

Ruggero Bertani Geothermal Innovation & Sustainability Enel Green Power Trieste, December 2015

The Geothermal Value Chain Integrated business model – Striving for Excellence

Centennial experience (since 1904) in geothermal electricity generation and fluid use

EGP growth in traditional high temperature resources and also in binary technology

The Geothermal Value Chain Prefeasibility, feasibility and project development

The entire geothermal value chain covered

The joint interpretation is the key to get the most reliable geothermal model

New Geothermal project development The assessment process

The Geothermal prefeasibility Geothermal projects assessment

The geothermal projects assessment is a **continuous improving process** along the project advancement **Goals, tools and methods, reliability** of the assessments change with project development level

Increasing With Project Progressing :

- The type and amount of available experimental data
- The type and effectiveness of appropriate tools for the assessment
- · The reliability of the resource assessment
- The accuracy and completeness of the Capex estimation
- The technical data necessary for the final project design

Decreasing With Project Progressing :

- · The uncertainty of the assessment
- The project risk

Field in operation

The production sustainability has to be monitored and revised also during the whole field operational life in order to

New Geothermal project development The assessment process

PPA Conditions

The scouting process steps

- 1) Preliminary assessment on bibliographic data Data collection and data base organization Identifying and assessing areas of potential interest
- 2) Preliminary Ranking on bibliographic data Ranking criteria definition Application of Ranking criteria to the Atlas

3) In field studies

Preliminary areas selection On site reconnaissance and data collections Data evaluation and assessment updating

4) Ranking updating

The Geothermal feasibility Main target and phases of the exploration

Ascertain the presence of a geothermal resource and assess the technical- economical feasibility of its exploitation

Final goal is the reduction of the mining risk

Geothermal exploration Typical field implementation of the skills

Reflecton seismic would be the most poweful survey for exploration and well targeting but:

- doesn't work well in volcanic environment
- it is expensive (~10 times the MT)

Exploration skills for well targeting and reservoir modeling can be helpfully used at any stage of the project: green and brown fields and fields under exploitation

Surface exploration Geological and hydrogeological surveys

Surface geological reconstruction

Studies of mineralization and hydrothermal alteration

Lineamier

by field recognition and satellite image analysis

Surface exploration Geochemistry survey

Collection and analyses of water and gas samples from natural geothermal manifestations (thermal springs, fumaroles, etc.), freshwater and well.

Two main targets:

- identification of areas with geothermal reservoir indicators (H3BO3, CO2, NH3, H2S, etc.).
- estimation of the reservoir temperature and the recharge origin (Isotopic geochemistry).

This activity is particularly useful in the prefeasibility phase

Surface exploration Gravity survey

Gravity anomalies, are directly related to the distribution of the density in the earth, therefore can give indications on the structural geology.

The cheaper and clever geophysical survey

Surface exploration Magnetotelluric survey (MT)

MT is a method for determining the resistivity of the earth by analyzing the change in time of the natural electric and magnetic fields.

Surface exploration Magnetotelluric survey – Volcanic environment

SMECTITE SMECTITE MIXED LAYER CLAY CAP 10-60 Q-m 10-60 Q-m

In volcanic environment hydrotermal fluids circulation at T <180 ° C, produces argillitic mineralization with low electrical resistivity (<10 ohm.m), while circulation at T> 180 °C produces propylitic mineralization highly resistive (10-100 ohms. m).

In the volcanic environment MT may show features directly linked to a geothermal system

Surface exploration

Reflection seismic - the most powerful investigation method in sedimentary geological environment

Direct indications of the structural geology up to several kilometers with high resolution (order of tens of meters)

apply more powerful and accurate targeting tools

Correlation fractures/seismic reflections The H horizon

Encouraging correlation between fractured levels and seismic reflections

Green Power

These signals are characterized by high amplitudes and correspond to the H seismic horizon inside the metamorphic basement

The H marker constitutes a target for drilling

Seismic method can significantly help in the detection of fractured levels, thus reducing the mining risk

2D seismic dataset: Larderello – Travale area

Year of acquisition	Source	Fold	N° of channels	Group interval [m]	Sampling rate [ms]
1976	Dynamite	6	48	50	2
1986	Vibroseis	24	96	30	4
1987	Vibroseis	30	120	30	4
1993	Vibroseis	30	120	30	2
2000	Vibroseis	32	192	30	4

50 seismic lines for a total of about 600 km

Integrated interpretation of seismic and well data for the reconstruction of the main geological and structural elements

3D survey in the Larderello-Travale area

It is difficult to give a target to wells located outside the seismic lines

Recent 3D seismic surveys Larderello – Travale area

Main acquisition parameters

<u>Source type</u>: dynamite <u>Bin dimension</u>: 25 x 40 m <u>Offset range</u>: 0 – 3000 m <u>Fold</u>: 1600% <u>Target depth</u>: 3000 – 4000 m

Source lines

Receivers lines

Dataset processed in an "amplitude preserving" way

The amplitude analysis carried out on the H horizon allowed the identification of the target for drilling

Seismic target for the drilling An example of the result (Montieri-Chiusdino area)

Productivity of the seismic target Montieri – Chiusdino area

Correlation between fractures detected in wells and seismic reflectors

The correspondence between seismic marker and fractured zones was statistically significant

In the Montieri - Chiusdino area more than 70% of the production comes from the H marker

Mining risk can be reduced, but not entirely eliminated

The Geothermal feasibility

Allocation of exploration costs for a geothermal project

A minimum cost for a safer overall investment

Geothermal project's evaluation process Target & main elements

 <u>Area's potential</u> in terms of <u>sustainable</u> electrical capacity 	MWe	Resource assessment (technology & plant size)	
• Evaluation and definition of all the technical aspects that affect the			
required <u>Capex & Opex</u>			
 Expected well's deliverability 	#	required wells	
Well's depth	MWe/well	M\$/well	
Interference effects	Spacing	wells per pad	
 Scaling or corrosion effects 	\$	Opex	
Gas content	%	Parassitic losses	
 Designing of the <u>exploitation strategy</u> 	Prod. & Re	einj.: where and how much	
 Forecast the <u>reservoir evolution</u> (resource availability and/or 	Production evolution and make up wells		

Complex process that requires to define many parameters and to foresee their evolution along the time

temperature decline) along the project lifetime

Once completed the drilling of deep wells it will be issued a final geothermal model that will define *size, temperature, productivity and fluid characteristics* of the geothermal reservoir.

At the end of the exploration the feasibility of an exploitation project will be quantitatively assessed (Project System)

Geothermal Drilling Drilling rigs evolution

At the beginning of 20th century... now

Geothermal Drilling EGP drilling rigs

Rigs detailed list

Туре	n°	Max depth	Features
		()	
НН 300	1	6000	Advanced Automatic track- mounted RIG
Mas 6000 E	5	6000	Traditional High Potentiality RIG
MR 7000 E	1	2000	Traditional Medium Potentiality RIG
ST6	1	1000	Traditional Low Potentiality RIG
TOTAL RIGS	8		

3 rig crews operating

365 days/year

HH300

Mas 6000 E

Geothermal Drilling State of art

- High average **depth** of wells from **3500**m to **4500**m
- **Directional drilling** on specific targets with a displacement of over 2000m
- Advanced automatic trailer-mounted rig technology
- Cementing technologies for deep and high temperature wells (350°C) and geothermal oriented tools
- Safety and environmental compliance
- Standard times of drilling activity ~190 days
 - » Rig moving
 - » Drilling

- ~35 days ~145 days
- » Well Testing ~10 days

New well -1100 -1150 -1250 -1250 -1300 -1350 -1450 -1450 -1550 Vista da 36° N 36 E 24=1/2 NEOGENE FLYSCH 18°5/8 CALCAREO MARNOSO 1000 SCAGLIE ETTONICHE -13*3/8 SERIE ANIDRITIC 500 **Real path** BASAMENTO 2000 FILEAD 9°5/8 GNE(SS) 2500 **Design path** 4000 m

Standard well diagram of a geothermal well Main data

- Average depth: 4000 m
- Duration of drilling activity: ~190 gg
 - » Moving ~35 gg
 - » Drilling ~145 gg
 - » Tests ~10 gg
- Budget cost: ~6.350 k€
 » Moving ~450 k€
 » Drilling ~5.900 k€

Standard well Major components.. about 6000!

Standard well Drilling data acquisition

- > Design of cement jobs in geothermal wells
- > Execution of cement jobs, water pumping and stimulation jobs (basic or acid mixtures) (115 jobs per year)
- Maintenance of all the cementing equipment
- > Technical management and supervision of all the services related to cementing, stimulation and drilling fluids
- Tuning of the cement slurries in the Cements and Fluids Lab
- Research & Development on drilling fluids

Cements and Fluids Cement job design

> Design of the job taking considering all the available data and, if necessary, acquisition of missing data

> Definition of the best cementing strategy by means of specific software

- Placing on site of all the needed equipment and materials
- > Set up of the cement
- Execution of the job

Cements and Fluids Cement job execution

Geothermal Project Life Cycle

Exploitation and technologies driven by reservoir characteristics

The geothermal resource

The different geothermal power conversion technologies

Aver. size (MW) ~45 ~35

~5

The geothermal resource

The different geothermal power conversion technologies

Installed capacity in MWe for each typology

Country	Back Pressure	Binary	Double Flash	Dry Steam	Hybrid	Single Flash	Triple flash	TOTAL
Africa	48	11				543		602
Asia		236	525	484		2514		3758
Europe		268	273	795		796		2133
Latin America	90	135	510			908		1642
North America		873	881	1584	2	60	50	3450
Oceania	44	266	356			259	132	1056
TOTAL	181	1790	2544	2863	2	5079	182	12640

Geothermal flash power plant

Geothermal Electricity: flash and dry steam plant

Geothermal sheeps – New Zealand

Larderello – Italy

Geothermal Electricity: flash and dry steam plant

Larderello – Italy

Geothermal Electricity: flash and dry steam plant

Berlin – El Salvador

Geothermal Electricity: binary plant

There is a "pot of gold " at the end of the rainbow

USA

Geothermal binary power plant

Geothermal Electricity: binary plant

Geothermal Electricity: binary plant

The Geothermal cost

Effect of well depths, plant size and summary table

MINIMUM UNIT COST based on a 30 MW, medium enthalpy, average values of depth, flow rate and success ratio

Cost item	Unit	Magmatic Geothermal Source	Hot Sedimentary Aquifer Geothermal Source	Engineered Geothermal System Geothermal Source
Wells	\$/kWe	1,250	4,545	7,500
Steam Above Ground System (SAGS)	\$/kWe	400	550	550
Power plant	\$/kWe	1900	2700	2400
Overall Cost	kW_{e}	3,550	7,795	10,450
Operation and maintenance (variable) power plant	\$/kWh	0.01	0.01	0.01
Operation and maintenance (variable) steam field	\$/kWh	0.006	0.006	0.007

Green Powe

The Geothermal cost Sensitivity studies

Larderello and The Geyser:

running capacity comparison

year

Green Power

Sustainable Development

THANKS FOR YOUR KIND ATTENTION!