



In 1 km<sup>2</sup>, standard thermal flux radiated is **60 kW** 





# Numerical modeling of geothermal fields Input













#### TAP → PERMEABILITY CAPACITY→VOLUME\*POROSITY







# CAPACITY→VOLUME\*POROSITY VOLTS → PRESSURE





Pressure Reduction is proportional to the Extracted Mass Comprimibility= (DV/V)/DP

 $\phi c_t = \phi c_{fl} + (1 - \phi)c_r$  $\Delta M = \phi c_t V \rho \Delta P$  $C_M = \Delta M / \Delta P$  $C_M = \phi c_t V \rho$  $\phi = \text{Porosity}$ 

Green Powe





k

Darcy Law (Henri Darcy, 1856)

$$\mathbf{F} = -k \frac{\rho}{\mu} (\nabla P - \rho g) \qquad \eta = \frac{k}{\mu \phi c_{f}}$$
$$\begin{pmatrix} F_{x} \\ F_{y} \\ F_{z} \end{pmatrix} = -k \frac{\rho}{\mu} \begin{pmatrix} \Delta P / \Delta x \\ \Delta P / \Delta y \\ \Delta P / \Delta z - \rho g \end{pmatrix}$$

## **Geothermal Modelling**



m

10

 $Log_{10}$ Δt

ln (r)







$$\Delta p = \frac{q\mu}{4\pi hk} E_1 \left( \frac{r^2}{4\eta t} \right)$$

$$E_1(x) = \int_x^\infty (1/y) e^{-y} dy$$

$$\Delta p = \frac{q\mu}{4\pi hk} \left[ ln \frac{4\eta t}{\gamma r^2} \right]$$

 $\frac{\eta t}{r^2} > 10^2$ 



**Green Power** 





#### **Linear Solution**

$$\Delta p = \frac{2q\mu}{Ak} \sqrt{\eta t} \text{ierfc} \left(\frac{x}{2\sqrt{\eta t}}\right)$$

$$\Delta p = \frac{q\mu}{kA\sqrt{\pi}}\sqrt{\eta t}$$







#### **SHALLOW**

- Shallow reservoir in

- •Temperature 170 200°

Metamorphic Basement depth 2000 - 3000 m
Top: 300° C isotherm
There is no particular lithological signature





### **Geothermal Modelling**

新 Enel Green Power

They address six categories, namely reservoir geometry, formation parameters, boundary/initial conditions, sinks and sources and computational parameters



(source: Pruess, 2002).



# Geothermal Modelling



#### FOR EACH CELL:

- density (2800 kg/m<sup>3</sup>)
- porosity (1.3 %)
- permeability (m<sup>2</sup>, X,Y,Z)
- conducibility (3.5 W/m°C)
- specific heat(850 J/kg°C)
- comprimibility (3 x 10<sup>-11</sup> m<sup>2</sup>/N)
- expansivity (10<sup>-5</sup> 1/°C)







Modeling grid and the recharge area (F)

# Permeability as assumed from the drawdown analysis for radial model

# **Geothermal Modelling**







# PetraSim: TOUGH2 Basics

# **Thunderhead Engineering Consultants, Inc.**

www.thunderheadeng.com +1.785.770.8511





#### **Phases and Components**



# Phases

- Homogeneous continuum
- May consist of one or more chemical components
- Examples: aqueous phase, nonaqueous phase (oil), gas, solid
- In a closed system, amount of different phases may change
- Phase change usually involves substantial heat effects

# Components

- Chemical species
- Can be present in several different phases
- Examples: H<sub>2</sub>O, NaCl, CO<sub>2</sub>
- Distribution of components in phases determined by chemistry
- All components in a phase flow together
- In a closed system, components are conserved.



#### **Relative Permeability**





**Saturation regime:** The porous medium is completely saturated with one phase.

**Pendular regime (a):** One phase occurs in the form of pendular bodies that do not touch each other so that there is no possibility of flow for that phase.

**Fenicular regime (b):** The porous medium exhibits an intermediate saturation with both phases.







- Must start with reasonable physical assumptions
- Getting correct initial conditions often requires a steadystate solution
- In our experience, it is rare to find an error in TOUGH2, but getting solutions can require several iterations



#### Equations of State



- EOS1 Water, water with tracer
- EOS2 Water, CO<sub>2</sub>
- EOS3 Water, air
- EOS4 Water, air (vapor pressure lowering)
- EOS5 Water, hydrogen
- EOS7 Water, brine, air
- EOS7R Water, brine, air, radionuclides
- EOS8 Water, "dead" oil, gas
- EOS9 Saturated/unsaturated water flow





- Materials are used to define the permeability and other properties in an analysis.
- Each cell is associated with a material.
- Information stored in this Material Editor are listed in the ROCKS section of a TOUGH2 input file.

|                                         | Material Data                                                                                                                                                                                                                                                                                                      | ×                                                                        |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Materials                               | Matrix Fracture                                                                                                                                                                                                                                                                                                    |                                                                          |
| ROCK1         Image: New         Delete | Name - MAT:         Description:         Color:         Density - DROK (kg/m^3):         Porosity - POR:         X Permeability - PER(1) (m^2):         Y Permeability - PER(2) (m^2):         Z Permeability - PER(3) (m^2):         Wet Heat Conductivity - CWET (W/m-C):         Specific Heat - SPHT (J/kg-C): | ROCK1<br>2600.0<br>0.1<br>1.0E-13<br>1.0E-13<br>1.0E-13<br>2.0<br>1000.0 |
|                                         | Additional                                                                                                                                                                                                                                                                                                         | Material Data                                                            |
|                                         | Apply                                                                                                                                                                                                                                                                                                              | OK Cancel                                                                |



#### Parameters include:

- Name limited to 5 characters
- Description A longer description for user clarity.
- **Color** used for display
- Rock Density (kg/m3)
- Porosity
- X, Y, and Z Permeability only define 1 value for xy direction when working with polygonal mesh
- Wet Heat Conductivity
- Specific Heat
- Relative Permeability
- Capillary Pressure
- A few others

| Materials | Matrix Sector                         | _             |
|-----------|---------------------------------------|---------------|
|           | Fracture                              |               |
| ROCK1     | Name - MAT:                           | ROCK1         |
|           | Description:                          |               |
| New       | Color:                                |               |
|           | Density - DROK (kg/m^3):              | 2600.0        |
|           | Porosity - POR:                       | 0.1           |
|           | X Permeability - PER(1) (m^2):        | 1.0E-13       |
|           | Y Permeability - PER(2) (m^2):        | 1.0E-13       |
|           | Z Permeability - PER(3) (m^2):        | 1.0E-13       |
|           | Wet Heat Conductivity - CWET (W/m-C): | 2.0           |
|           | Specific Heat - SPHT (J/kg-C):        | 1000.0        |
|           | Additional                            | Material Data |
|           | Apply                                 | OK Cancel     |





#### **Relative Permeability**



- Accessed through the Additional Material Data button.
- You select the preferred RP function and enter desired parameters.
- Plot displays the curves (gas in magenta and blue is liquid)
- Curves can drastically affect model results, so look in literature for accepted parameters





# **Capillary Pressure**



#### Similar process for Capillary Pressure





#### Pore Compressibility – defines how the pore volume changes as a function of pressure. This can be important during injection.

Pore Expansivity - defines how the pore volume changes with temperature.

- Dry Heat Conductivity used with the wet heat conductivity to change the thermal conductivity of the rock.
  - **Tortuosity Factor** related to diffusion, details in the TOUGH2 manual

Klinkenberg Parameter – related to gas phase permeability, details in the TOUGH2 manual



| Additional Materia                    | al Data 🛛 🗙      |
|---------------------------------------|------------------|
| Relative Perm Capillary Press Misc    |                  |
| Pore Compressibility - COM (1/Pa):    | 1e-6             |
| Pore Expansivity - EXPAN (1/C):       | 0.0              |
| Dry Heat Conductivity - CDRY (W/m-C): |                  |
| Same as Wet                           |                  |
| O User Defined:                       | 2.0              |
| Tortuosity Factor - TORTX:            | 0.0              |
| Klinkenberg Parameter - GK (1/Pa):    | 0.0              |
|                                       |                  |
|                                       | Reset to Default |
|                                       | OK Cancel        |



#### **Materials**

#### Materials can be assigned to:

- Layers (through the Layer Manager)
- Regions (right click on the Region in the data tree)
- Cells or groups of Cells (selected through the 3D View)

Or...

Properties Initial Conditions Layer 2 Name: Layer 1 Color: Material: ROCK1 V 600.0 Top: Constant v 300.0 Base: Constant v Regular O Custom Dz: 5 Cells: 1.0 Factor: New.... Delete...



Edit L



Set cell data option available through the Model menu, and used to import materials based on an external geological or geostatistical model.

The best way to approach this would be to:

- Export a list of XYZ values for each grid cell through the File menu.
- Use these xyz values to determine the material at each cell, and copy and paste the list into the Set Cell Data window.

|       | Set Cell Data ×                  |               |          |           |  |
|-------|----------------------------------|---------------|----------|-----------|--|
| Blank | Blank entries will be ignored.   |               |          |           |  |
| •     | Materials O Perm. Mod O Porosity |               |          |           |  |
|       | Cell ID                          | Material Name |          | Сору      |  |
| 1     | 001                              |               |          | (B) Death |  |
| 2     | 002                              |               |          | Paste     |  |
| 3     | 003                              |               |          | 🔏 Cut     |  |
| 4     | 004                              |               |          |           |  |
| 5     | 005                              |               |          |           |  |
| 6     | 006                              |               |          |           |  |
| 7     | 007                              |               |          |           |  |
| 8     | 008                              |               |          |           |  |
| 9     | 009                              |               |          |           |  |
| 10    | 010                              |               |          |           |  |
| 11    | 011                              |               |          |           |  |
| 12    | 012                              |               |          |           |  |
| 13    | 013                              |               |          |           |  |
| 14    | 014                              |               |          |           |  |
| 15    | 015                              |               |          |           |  |
| 16    | 016                              |               |          |           |  |
| 17    | 017                              |               | <b>v</b> |           |  |
|       |                                  |               |          |           |  |
|       |                                  |               | ОК       | Cancel    |  |
|       |                                  |               |          |           |  |





#### PetraSim also supports the following parameters:

- PMX Permeability Modifier (multiplier) in the ELEME block of the TOUGH2 input file
- PORX Porosity in the INCON block of the **TOUGH2** input file
- These can be assigned by selecting a cell or group of cells, or through the Set Cell Data window.
- Use of these parameters allow you to spatially vary porosity and permeability values without creating a huge number of material types. You will still be limited to assigning other material properties, RP and CP using the materials defined under ROCKS.



| Set Cell Data × |                                          |               |              |          |  |
|-----------------|------------------------------------------|---------------|--------------|----------|--|
| Blan            | Blank entries will be ignored.           |               |              |          |  |
|                 | Materials     O Perm. Mod     O Porosity |               |              |          |  |
|                 |                                          | Material Name |              | <b>B</b> |  |
|                 | Cell ID                                  | Material Name |              | L Copy   |  |
| 1               | 001                                      |               | <u>^</u>     | Paste    |  |
| 2               | 002                                      |               |              |          |  |
| 3               | 003                                      |               |              | 🔏 Cut    |  |
| 4               | 004                                      |               |              |          |  |
| 5               | 005                                      |               |              |          |  |
| 6               | 006                                      |               |              |          |  |
| 7               | 007                                      |               |              |          |  |
| 8               | 008                                      |               |              |          |  |
| 9               | 009                                      |               |              |          |  |
| 10              | 010                                      |               |              |          |  |
| 11              | 011                                      |               |              |          |  |
| 12              | 012                                      |               |              |          |  |
| 13              | 013                                      |               |              |          |  |
| 14              | 014                                      |               |              |          |  |
| 15              | 015                                      |               |              |          |  |
| 16              | 016                                      |               |              |          |  |
| 17              | 017                                      |               | $\mathbf{v}$ |          |  |
|                 |                                          |               |              |          |  |
|                 |                                          |               | ОК           | Cancel   |  |
|                 |                                          |               | 0.0          | Contect  |  |





- Most geologic models have a *Natural State* that represents flow and heat transfer before being disturbed.
- Except in the simplest cases, do not expect to define the natural state of your analysis by specifying initial conditions.
- Any realistic model requires that you solve one or more analyses that bring to you to natural state. Then you load the natural state to start your simulation.






Active Cell Count: 720 / 720

TOUGH FX

HYDRATE





# The specific initial conditions are different for each EOS

- Single, two, or multiple-phases
- Sometimes option for multiple components (CO2, NaCl, Brine, etc.)
- Only for the simplest models will the initial conditions be uniform over the model







Accessed through the Properties / Initial Conditions menu item

- Options are EOS specific
- Conditions can be defined as:
  - Constant
  - Function (pressure, temperature)
  - File (2D models only, not recommended for 3D)

|                          |                 | Initial Conditions                                 | × |
|--------------------------|-----------------|----------------------------------------------------|---|
| EOS1: Water, Non-Isothe  | rmal            |                                                    |   |
| Single Phase (P, T) ∨    |                 |                                                    |   |
| Pressure (Pa):           | Function V      | = A + Bx + Cy + Dz A: 1.013E5 B: 0.0 C: 0.0 D: 0.0 |   |
| Temperature (C):         | Constant 🗸      | 25.0                                               |   |
| Gas Saturation:          | Constant v      | 0.0                                                |   |
| Mass Fraction of Tracer: | Constant $\lor$ | 0.0                                                |   |
|                          |                 | OK Cance                                           | 3 |





#### Accessed though the Layer Manager or by right clicking on the Region

#### Same definition options

- Constant
- Function
- File
- Layer initial conditions over-ride Default initial conditions

|         |                             |                 | Edit Layer         | s          |        |        |        | ×      |
|---------|-----------------------------|-----------------|--------------------|------------|--------|--------|--------|--------|
| Layer 1 | Properties Initial Conditio | ns              |                    |            |        |        |        |        |
|         | Specify by Layer            | rmal            |                    |            |        |        |        |        |
|         | Single Phase (P, T) V       |                 |                    |            |        |        |        |        |
|         | Pressure (Pa):              | Function 🗸      | = A + Bx + Cy + Dz | A: 1.013E5 | B: 0.0 | C: 0.0 | D: 0.0 |        |
|         | Temperature (C):            | Constant 🗸      | 25.0               |            |        |        |        |        |
|         | Gas Saturation:             | Constant $\lor$ | 0.0                |            |        |        |        |        |
|         | Mass Fraction of Tracer:    | Constant $\lor$ | 0.0                |            |        |        |        |        |
| ~       |                             |                 |                    |            |        |        |        |        |
| New     |                             |                 |                    |            |        |        |        |        |
| Delete  |                             |                 |                    |            |        |        |        |        |
|         |                             |                 |                    |            |        | Apply  | ОК     | Cancel |

Region initial conditions over-ride Layer (and Default) Initial Conditions





- One or more cells can be selected and assigned unique initial conditions
- When SAVE file is loaded as initial conditions, each cell is assigned unique initial conditions based on the results of the steady state run.

|                                                                          | Edit Ce                                          | ell Data      |         | ×   |
|--------------------------------------------------------------------------|--------------------------------------------------|---------------|---------|-----|
| Properties Sources/Sink                                                  | s Initial Conditions                             | Print Options |         |     |
| EOS1: Water, Non-Isoth<br>Use Region (or Globa<br>Specify Initial Condit | nermal<br>al) Initial Conditions<br>ions by Cell |               |         |     |
| Two-Phase (Pg, Sg)                                                       | ~                                                |               |         |     |
| Pressure:                                                                | 1.013E5                                          |               |         |     |
| Temperature:                                                             | 25.0                                             |               |         |     |
| Gas Saturation:                                                          | 0.0                                              |               |         |     |
| Fraction of Tracer:                                                      | 0.0                                              |               |         |     |
|                                                                          |                                                  |               |         |     |
|                                                                          |                                                  |               |         |     |
|                                                                          |                                                  |               |         |     |
|                                                                          |                                                  |               |         |     |
|                                                                          |                                                  |               |         |     |
|                                                                          |                                                  |               |         |     |
|                                                                          |                                                  |               |         |     |
|                                                                          |                                                  |               | OK Cano | :el |



 .SIM – Binary file that includes your PetraSim model. You should only store one file in a folder.

.DAT – TOUGH2/T2VOC/TMVOC input ASCII file

Input files

If you are using TOUGHREACT, there will be three input files: Flow.INP, Chem.INP, Solute.INP

There may be other input files that are EOS specific (CO2TAB, thermodynamic database, etc.)



# Output files

The TOUGH2 executables included with PetraSim create 2 types of files:

- TOUGH2 .OUT files contain model results and helpful error messages for non-converging models
- .CSV files Used for result visualization and can easily be loaded into Excel or other programs.

|                                                |                                                              |                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                                                    |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      | Simple 5Spo                                                                                 | t Example.out - N                       | lotepad                                                                                     |                                                                                                                                                                                                          |                                                                                                                                                                                                                      |              |
|------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                |                                                              |                                                                                                                                            |                                                                                                                                       | File Edit                                                                                                                                                                                          | Format View Hel                                                    | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                                             |                                         |                                                                                             |                                                                                                                                                                                                          |                                                                                                                                                                                                                      |              |
|                                                |                                                              |                                                                                                                                            |                                                                                                                                       | , e                                                                                                                                                                                                | 0000 00 0<br>0 0 0<br>0 0 0 0<br>0 0 0 0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99 99<br>9 9 9<br>9 9                                                                                |                                                                                             |                                         |                                                                                             | 90 0 0<br>0 00 0<br>0 0 0 0                                                                                                                                                                              |                                                                                                                                                                                                                      | 0<br>0<br>00 |
|                                                |                                                              |                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                                                    | 0 00 0                                                             | 6 600 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000 000                                                                                              |                                                                                             | 60 6666 Ö                               | 0 0 0 C                                                                                     | 99 9 9 9                                                                                                                                                                                                 | 0 0 00 0                                                                                                                                                                                                             | 0            |
|                                                |                                                              |                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                                                    | то                                                                 | UGH2 IS A PROG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RAM FOR MULTIP                                                                                       | HASE MULTICOMP                                                                              | ONENT FLOW IN                           | PERMEABLE MEDIA                                                                             | A, INCLUDING HE                                                                                                                                                                                          | AT FLOW.                                                                                                                                                                                                             |              |
|                                                |                                                              |                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                                                    | 11                                                                 | IS A MEMBER OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THE MULKOM FA                                                                                        | WILY OF CODES,                                                                              | DEVELOPED AT                            | LAWRENCE BERKEI                                                                             | LEY NATIONAL LA                                                                                                                                                                                          | BORATORY.                                                                                                                                                                                                            |              |
|                                                |                                                              |                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                                                    |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | то                                                                                                   | UGH2 - VERSION                                                                              | 2.0 (OCTOBER                            | 1999)                                                                                       |                                                                                                                                                                                                          |                                                                                                                                                                                                                      |              |
|                                                |                                                              |                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                                                    |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      | T2CG2 501                                                                                   | ver Package                             |                                                                                             |                                                                                                                                                                                                          |                                                                                                                                                                                                                      |              |
|                                                |                                                              |                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                                                    |                                                                    | ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | **********                                                                                           | **********                                                                                  | **********                              | *****                                                                                       | ******                                                                                                                                                                                                   |                                                                                                                                                                                                                      |              |
|                                                |                                                              |                                                                                                                                            |                                                                                                                                       | NOTICE                                                                                                                                                                                             | Copyright 1999                                                     | by The Regent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s of the Unive                                                                                       | from the U.S.                                                                               | Depentment of                           | to approval by                                                                              | y the U.S. Depa                                                                                                                                                                                          | artment of Ener                                                                                                                                                                                                      | rgy).        |
|                                                |                                                              |                                                                                                                                            |                                                                                                                                       | certair                                                                                                                                                                                            | rights as fol                                                      | lows: the U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Government ha                                                                                        | s been granted                                                                              | for itself an                           | d others acting                                                                             | g on its behalf                                                                                                                                                                                          | F a paid-up, no                                                                                                                                                                                                      | nublic       |
| Ŧ                                              |                                                              | . a                                                                                                                                        |                                                                                                                                       |                                                                                                                                                                                                    | () ()                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      | , tapi ouacej pi                                                                            |                                         |                                                                                             | 2 5                                                                                                                                                                                                      |                                                                                                                                                                                                                      |              |
|                                                | ⊟ • <b>)</b> •                                               | (2 · · ·                                                                                                                                   |                                                                                                                                       |                                                                                                                                                                                                    |                                                                    | mesn.o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SV - EXCEI                                                                                           |                                                                                             |                                         |                                                                                             | f L                                                                                                                                                                                                      |                                                                                                                                                                                                                      | ÷.           |
| FIL                                            | E HO                                                         | IN IN                                                                                                                                      | SERT PA                                                                                                                               | GE LAYOU                                                                                                                                                                                           | FORM                                                               | IULAS D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATA RI                                                                                              | EVIEW \                                                                                     | /IEW                                    | _                                                                                           | Alis                                                                                                                                                                                                     | on Alcott 👻                                                                                                                                                                                                          | M            |
| <b>P</b>                                       | 🔩 👗 🗍                                                        | Calibri                                                                                                                                    | - 11 -                                                                                                                                |                                                                                                                                                                                                    |                                                                    | General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ▼ P Con                                                                                              | ditional For                                                                                | matting *                               | 🚰 Insert 🔹                                                                                  | $\sum \cdot \frac{A}{Z}$                                                                                                                                                                                 | <b>T</b> -                                                                                                                                                                                                           |              |
| 2.00                                           | _ <u>_</u> _                                                 | в <i>I</i> <u>U</u>                                                                                                                        | - A A                                                                                                                                 | $\equiv \equiv =$                                                                                                                                                                                  | = 🗄 -                                                              | \$ - %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P 🐺 Forr                                                                                             | mat as Table                                                                                | -                                       | 🖹 Delete                                                                                    | - 💵 - 🗿                                                                                                                                                                                                  |                                                                                                                                                                                                                      |              |
| ast<br>v                                       | .с. 💉                                                        | 🗄 🖌 💍                                                                                                                                      | • <u>A</u> •                                                                                                                          | €₹                                                                                                                                                                                                 | »<br>~                                                             | 00. 0. <b>→</b><br>0.€ 00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 🐷 Cell                                                                                               | Styles -                                                                                    |                                         | 🗒 Format 🔻                                                                                  | r 🧶 👻                                                                                                                                                                                                    |                                                                                                                                                                                                                      |              |
| lipl                                           | board 5                                                      | For                                                                                                                                        | nt ra                                                                                                                                 | Alignn                                                                                                                                                                                             | nent 🗔                                                             | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r <sub>3r</sub>                                                                                      | Styles                                                                                      |                                         | Cells                                                                                       | Editing                                                                                                                                                                                                  | g                                                                                                                                                                                                                    | ~            |
| 1                                              |                                                              | -                                                                                                                                          | ~                                                                                                                                     | £. 718                                                                                                                                                                                             | 45                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      |                                                                                             |                                         |                                                                                             |                                                                                                                                                                                                          |                                                                                                                                                                                                                      |              |
| 41                                             |                                                              |                                                                                                                                            | ~ ¥                                                                                                                                   | Jx III                                                                                                                                                                                             |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      |                                                                                             |                                         |                                                                                             |                                                                                                                                                                                                          |                                                                                                                                                                                                                      | •            |
|                                                | Α                                                            | В                                                                                                                                          | С                                                                                                                                     | D                                                                                                                                                                                                  | E                                                                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G                                                                                                    | н                                                                                           | 1                                       | J                                                                                           | K                                                                                                                                                                                                        | L                                                                                                                                                                                                                    |              |
|                                                | IME                                                          | ELEM                                                                                                                                       | INDEX                                                                                                                                 | P (Pa)                                                                                                                                                                                             | T (deg C)                                                          | SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SW                                                                                                   | Xw1                                                                                         | Xw2                                     | PCAP (Pa)                                                                                   | DG (kg/mʻ                                                                                                                                                                                                | DW (kg/m                                                                                                                                                                                                             | ^3)          |
| _                                              | 3100                                                         | 01                                                                                                                                         | 1                                                                                                                                     | 8591655                                                                                                                                                                                            | 299.9914                                                           | 5.44E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.994564                                                                                             | 1                                                                                           | 0                                       | 0                                                                                           | 46.18557                                                                                                                                                                                                 | 712.2368                                                                                                                                                                                                             | _            |
| -                                              | 3100                                                         | 02                                                                                                                                         | 2                                                                                                                                     | 8592692                                                                                                                                                                                            | 300                                                                | 1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.989994                                                                                             | 1                                                                                           | 0                                       | 0                                                                                           | 46.19211                                                                                                                                                                                                 | 712.2191                                                                                                                                                                                                             | _            |
| -                                              | 3100                                                         | 03                                                                                                                                         | 3                                                                                                                                     | 8592692                                                                                                                                                                                            | 300                                                                | 1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99                                                                                                 | 1                                                                                           | 0                                       | 0                                                                                           | 46.19211                                                                                                                                                                                                 | 712.2191                                                                                                                                                                                                             | _            |
| +                                              | 3100                                                         | 04                                                                                                                                         | 4                                                                                                                                     | 8592692                                                                                                                                                                                            | 300                                                                | 1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99                                                                                                 | 1                                                                                           | 0                                       | 0                                                                                           | 46.19211                                                                                                                                                                                                 | 712.2191                                                                                                                                                                                                             | _            |
|                                                | 2100                                                         | 0.5                                                                                                                                        |                                                                                                                                       |                                                                                                                                                                                                    | 200                                                                | 1 005 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                 |                                                                                             |                                         |                                                                                             | 46 10011                                                                                                                                                                                                 | 710.0101                                                                                                                                                                                                             |              |
|                                                | 3100                                                         | 05                                                                                                                                         | 5                                                                                                                                     | 8592692                                                                                                                                                                                            | 300                                                                | 1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99                                                                                                 | 1                                                                                           | 0                                       | 0                                                                                           | 46.19211                                                                                                                                                                                                 | 712.2191                                                                                                                                                                                                             | _            |
| _                                              | 3100<br>3100                                                 | 05                                                                                                                                         | 5                                                                                                                                     | 8592692<br>8592692                                                                                                                                                                                 | 300<br>300                                                         | 1.00E-02<br>1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.99                                                                                                 | 1                                                                                           | 0                                       | 0                                                                                           | 46.19211<br>46.19211                                                                                                                                                                                     | 712.2191<br>712.2191<br>712.2191                                                                                                                                                                                     |              |
| _                                              | 3100<br>3100<br>3100<br>3100                                 | 05 06 07 08                                                                                                                                | 5<br>6<br>7<br>8                                                                                                                      | 8592692<br>8592692<br>8592692<br>8592692                                                                                                                                                           | 300<br>300<br>300<br>300                                           | 1.00E-02<br>1.00E-02<br>1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.99<br>0.99<br>0.99                                                                                 | 1<br>1<br>1                                                                                 | 0                                       | 0 0 0 0                                                                                     | 46.19211<br>46.19211<br>46.19211<br>46.19211                                                                                                                                                             | 712.2191<br>712.2191<br>712.2191<br>712.2191                                                                                                                                                                         |              |
| )                                              | 3100<br>3100<br>3100<br>3100<br>3100                         | 05<br>06<br>07<br>08<br>09                                                                                                                 | 5<br>6<br>7<br>8                                                                                                                      | 8592692<br>8592692<br>8592692<br>8592692<br>8592692                                                                                                                                                | 300<br>300<br>300<br>300<br>300                                    | 1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99<br>0.99<br>0.99<br>0.99<br>0.99                                                                 | 1<br>1<br>1<br>1                                                                            | 000000000000000000000000000000000000000 | 0 0 0 0 0 0 0                                                                               | 46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211                                                                                                                                                 | 712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191                                                                                                                                                             |              |
| )                                              | 3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100         | 05<br>06<br>07<br>08<br>09<br>10                                                                                                           | 5<br>6<br>7<br>8<br>9                                                                                                                 | 8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692                                                                                                                          | 300<br>300<br>300<br>300<br>300<br>300                             | 1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99                                                         | 1<br>1<br>1<br>1<br>1<br>1                                                                  | 000000000000000000000000000000000000000 | 0<br>0<br>0<br>0<br>0                                                                       | 46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211                                                                                                                                     | 712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191                                                                                                                                                 |              |
| )                                              | 3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100         | 05<br>06<br>07<br>08<br>09<br>10<br>11                                                                                                     | 5<br>6<br>7<br>8<br>9<br>10<br>11                                                                                                     | 8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692                                                                                                               | 300<br>300<br>300<br>300<br>300<br>300<br>300<br>300               | 1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99994                                              | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                        | 000000000000000000000000000000000000000 | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211                                                                                                                         | 712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191                                                                                                                                     |              |
| )<br> <br> <br>                                | 3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100 | 05<br>06<br>07<br>08<br>09<br>10<br>11<br>12                                                                                               | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                                               | 8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692                                                                                                    | 300<br>300<br>300<br>300<br>300<br>300<br>300<br>300               | 1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.989994                                     | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                   | 000000000000000000000000000000000000000 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | 46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211                                                                                                             | 712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191                                                                                                                         |              |
| )<br>)<br>)                                    | 3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100 | 05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>12                                                                                         | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13                                                                                   | 8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692                                                                              | 300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | 1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.989994<br>0.99<br>0.99                             | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                         |                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | 46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211                                                                                                             | 712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191                                                                                                             |              |
| D<br>1<br>2<br>3<br>4<br>5                     | 3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100 | 05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>13<br>14                                                                                   | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                                                   | 8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692                                                                   | 300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | 1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.989994<br>0.99<br>0.99<br>0.99                     | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    |                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211                                                                                                 | 712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191                                                                                                 |              |
| 0<br>1<br>2<br>3<br>4<br>5<br>5                | 3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100 | 05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>13<br>14<br>15                                                                             | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                                                             | 8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692                                                                   | 300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | 1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.98<br>994<br>0.99<br>0.99<br>0.99<br>0.99          | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          |                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211                                                                                     | 712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191                                                                                     |              |
| 0<br>1<br>2<br>3<br>4<br>5<br>5<br>7           | 3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100 | 05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                       | 5<br>6<br>7<br>8<br>9<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                  | 8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692                                                        | 300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | 1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.98<br>9994<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                |                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211                                                                         | 712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191                                                                         |              |
| )<br> <br>2<br>3<br>3<br>1<br>5<br>5<br>7<br>3 | 3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100 | 05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                                 | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                                 | 8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692                                             | 300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | 1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.98<br>9994<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1           |                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211                                                             | 712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191                                                             |              |
|                                                | 3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100 | 05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                                                           | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                                                           | 8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692                                             | 300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | 1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99                                         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211                                                 | 712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191                                                             |              |
|                                                | 3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100 | 05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19                                                     | 5<br>6<br>7<br>8<br>9<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>5<br>16<br>6<br>17<br>7<br>18<br>9<br>9                             | 8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692                                                        | 300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | 1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99                                         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211                                                 | 712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191                                                             |              |
|                                                | 3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100 | 05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20                                               | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20                                               | 8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692                                  | 300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | 1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99                                         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211                                                 | 712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191                                                 |              |
|                                                | 3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100 | 05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>20<br>21                                   | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>20<br>21                                   | 8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692                       | 300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | 1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99                                         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211                                     | 712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191                         |              |
|                                                | 3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100 | 05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>6<br>17<br>18<br>19<br>200<br>21<br>22                             | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22                             | 8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692            | 300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | 1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E- | 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99                                         |                                                                                             |                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211                         | 712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191                         |              |
|                                                | 3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100 | 05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>6<br>17<br>18<br>19<br>20<br>20<br>21<br>1<br>22<br>23             | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>16<br>17<br>18<br>19<br>200<br>21<br>21<br>22<br>23                | 8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692 | 300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | 1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E- | 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99                                         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                         |                                                                                             | 46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211             | 712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191             |              |
|                                                | 3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100<br>3100 | 05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>13<br>13<br>14<br>15<br>16<br>6<br>17<br>17<br>18<br>19<br>20<br>21<br>1<br>22<br>23<br>24 | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>6<br>17<br>7<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>22<br>23 | 8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692<br>8592692            | 300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | 1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E-02<br>1.00E- | 0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99                                         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                         |                                                                                             | 46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211<br>46.19211 | 712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191<br>712.2191 |              |



# **Output files**

- Mesh.csv includes output for all cells in model
- Conn.csv includes connection information for all cells in model
- The time steps included in these files are for the solution output times only. These are established through the Analysis / Output Controls menu





# **Output files**



- Foft.csv output data for individual print cells
- Coft.csv data for print connections
- Goft.csv data for sources/sinks in the models
- This output is enabled through the Cell or Well Edit windows in PetraSim









# **Output 2D Planes**

3D Results - C:\Users\alison\Documents\resources\five-spot\five-spot.sim 3D.sim

2



- 🗆 🗙

T (deg C) 300

227

153

6.11





- 🗆 🗙



# **Output Line Plots**



- Created through the 3D Results Window
- User enters xyz values for endpoint locations
- User chooses output time and plot variable
- Data can be exported to CSV file





# **Output Time Plots**



#### Created through the Results menu

- Uses chooses variable for plotting and cell
- Axes are adjustable
- Data pulled from foft.csv file when available, or mesh.csv file
- Data can be exported to CSV file



# **Output Source/Sink Plots**

#### Created through the Results menu

- Uses chooses variable for plotting and cell
- Axes are adjustable
- Values are based on connection data and are pulled from the goft.csv file
- Data can be exported to CSV file





# **Output Well Plots**



#### Created through the Results menu

- Similar selection and plotting options to the other 2D plots
- Summation of data from the Goft.csv file.
- Data can be exported to CSV file
- Print option for well must be enabled





# **Conceptual Model**



# Defines the high-level features of the model and includes:

#### Model Boundary

- Model Layers
- Internal Boundaries
- Regions
- Wells





Green Powe

# **Conceptual Model: Boundary**

- Is a 2D polygon.
- Can be any shape (concave or convex). Default is a rectangle.
- Accessed through the Boundary Edit item under the Model menu.
- Boundaries can be drawn by hand or can be imported from a list of xy values.







#### Conceptual Model: Wells



- PetraSim provides a basic option to define wells as geometric objects (lines in 3D space).
- Injection or production options are assigned to the well and PetraSim handles the details of identifying the cells that are intersected by the well and applying the appropriate boundary conditions to each cell.
- This is not a true coupled well model! It is a means of identifying the cells that intersect a well and creating the individual sources/sinks for each cell.
- It also provides a way to label and display wells.



### **Conceptual Model: Wells**



#### Well definition options include:

- Location XY coordinates along the well trace
- Geometry Top and base elevation of completion interval
- Flow Injection/Production options
- Print options

Wells will be covered in more detail later in the course!

|                     |                  | Edit Well                       |                    |  |  |  |  |  |
|---------------------|------------------|---------------------------------|--------------------|--|--|--|--|--|
| Properties Geometry | Flow Print Optic | ons                             |                    |  |  |  |  |  |
| Production          |                  |                                 |                    |  |  |  |  |  |
| _ Hass out.         | Constant V       | Apportion:                      | 0.0<br>Using k*h ∨ |  |  |  |  |  |
| ✔ Well on Deliv.:   | Productivity Inc | dex - PI (m^3):                 | 2.0E-12            |  |  |  |  |  |
|                     | Pressure (Pa):   |                                 | 9.4E6              |  |  |  |  |  |
| Totootion           | Gradient:        | Well Model 🗸                    |                    |  |  |  |  |  |
| Water/Steam:        | Constant 🗸       | Rate (kg/s):                    | 0.0                |  |  |  |  |  |
|                     |                  | Enthalpy (J <mark>/</mark> kg): | 0.0                |  |  |  |  |  |
|                     |                  | Apportion:                      | Using k*h ∨        |  |  |  |  |  |
| Tracer:             | Constant v       | Rate (kg/s):                    | 0.0                |  |  |  |  |  |
|                     |                  | Enthalpy (J/kg):                | 0.0                |  |  |  |  |  |
|                     |                  | Apportion:                      | Using k*h ∨        |  |  |  |  |  |
|                     |                  |                                 | OK Cancel          |  |  |  |  |  |



# **Conceptual Model: Layers**



- PetraSim allows the user to define Layers and Regions as high level geometric entities, independent of the grid.
- Layers can be used to control material properties, initial physical and chemical conditions and the spacing of cells in the z direction.





# **Conceptual Model: Layers**

- Layer divisions should extend to the boundary of the model.
- Layer divisions are allowed to touch along areas, pinching the layer, but they should not cross within the model boundary.
- There must always be at least one layer. If you do not define one, the program will create a single default layer based on a planar upper and lower surface.









# Conceptual Model: Layers & Mesh



- When a mesh is created, the mesh cell layers mimic the layer elevations and can, in some cases, disappear.
- Warning about possible convergence problems with pinching out layers.





# Conceptual Model: Layers & Mesh



# PetraSim provides three types of solution meshes:

- Regular cells are rectangular hexahedrons.
- Polygonal uses extruded Voronoi cells to conform to any boundary and supports refinement around wells.
- Radial represents a slice of an axisymmetric cylindrical mesh. This is based on the Regular mesh, but it only allows 1 Y-division.



# **Conceptual Model: Regular Mesh**

Orthogonal grid cell columns and rows

- Grid cells spacing can vary in each direction and can be refined around wells or other areas where you might expect to see a high flow or heat gradient
- Models are typically stable and grids honor geometric requirements of the TOUGH2 simulators



Not always efficient – lots of extra grid cells created in areas adjacent to refinement areas.



# **Conceptual Model: Regular Mesh**

#### Spacing options include:

- Regular Constant spacing in each direction
- Regular with a spacing factor Spacing factor increases or decreases cell size based on equation listed in User's Manual.
- Custom Cell spacing is specified using a format similar to the TOUGH2 MeshMaker format.

| Mesh Type:       Regular       Output         Divisions: <ul> <li>Regular</li> <li>Custom</li> </ul> X Cells:              8 <ul> <li>X Factor:</li> <li>1.0</li> <li>Y Cells:</li> <li>Y Factor:</li> <li>Y Factor:</li> <li>Note:</li> <li>Z-divisions are set by layer.</li> </ul> | Create Mesh                         | ×         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|
| Divisions:   Regular Custom  X Cells: 8  X Factor: 1.0  Y Cells: 6  Y Factor: 1.0  Note: Z-divisions are set by layer.                                                                                                                                                                | Mesh Type: Regular 💌                |           |
| X Cells:       8       X Factor:       1.0         Y Cells:       6       Y Factor:       1.0         Note:       Z-divisions are set by layer.                                                                                                                                       | Divisions: 🖲 Regular 🔘 Custom       |           |
| Y Cells: 6 Y Factor: 1.0<br>Note: Z-divisions are set by layer.                                                                                                                                                                                                                       | X Cells: 8 X Factor:                | 1.0       |
| Note: Z-divisions are set by layer.                                                                                                                                                                                                                                                   | Y Cells: 6 Y Factor:                | 1.0       |
| OK Cancel                                                                                                                                                                                                                                                                             | Note: Z-divisions are set by layer. | OK Cancel |

| Crea | eate Mesh                           |          |       |               |  |  |  |
|------|-------------------------------------|----------|-------|---------------|--|--|--|
| Me   | Mesh Type: Regular -                |          |       |               |  |  |  |
| Div  |                                     |          |       |               |  |  |  |
|      | Asions: OF                          |          | istom |               |  |  |  |
|      | Dir [X, Y]                          | Fraction | Cells | ×⊞ Insert Row |  |  |  |
| 1    | х                                   | 0.5      |       | Bemove Row    |  |  |  |
| 2    | х                                   | 0.5      | 15    | Kellove Kow   |  |  |  |
| 3    | Y                                   | 0.25     | 12    | 2             |  |  |  |
| 4    | Y                                   | 0.75     | 3     | 3 Move Up     |  |  |  |
| *    |                                     |          |       | Move Down     |  |  |  |
|      |                                     |          |       |               |  |  |  |
| No   | Note: Z-divisions are set by laver. |          |       |               |  |  |  |
|      |                                     |          |       |               |  |  |  |
|      |                                     |          |       |               |  |  |  |
|      |                                     |          |       | OK Cancel     |  |  |  |
|      |                                     |          |       |               |  |  |  |



# Conceptual Model: Polygonal Mesh

- Uses extruded Voronoi cells
- Cells can conform to any boundary
- Cells can be refined around wells or other refinement points defined by the user
- More efficient way to model larger areas only refine the mesh in areas where you need to
- Con Post-processing contours not as smooth
- Con Small edge length might cause convergence problems



# Conceptual Model: Polygonal Mesh



Parameters defined during mesh creation:

- Maximum Cell Area (approximate) in XY Plane
- Minimum Refinement Angle controls how quickly the area near wells disperses.
- Maximum Area near Wells
- Additional Refinement –defines X and Y coordinates (and approximate areas) at which to apply refinement to the mesh.

|                                     | Cre          | ate Mesh | >             |  |  |  |
|-------------------------------------|--------------|----------|---------------|--|--|--|
| Mesh Type: Polygona                 | al 🗸         |          |               |  |  |  |
| Maximum Cell Area:                  | 7209.0       | m²       |               |  |  |  |
| Min Refinement Angle:               | 30.0 °       |          |               |  |  |  |
| Estimated cell count:               | 1500         |          |               |  |  |  |
| Well Refinement                     |              |          |               |  |  |  |
| <ul> <li>Refine Wells</li> </ul>    |              |          |               |  |  |  |
| Max Area near We                    | lls: 720.9 n | n²       |               |  |  |  |
| Additional Refinement               |              |          |               |  |  |  |
| x                                   | Y            | Area     | ¥⊞ Insert Row |  |  |  |
| *                                   |              |          | Remove Row    |  |  |  |
| 🐟 Move Up                           |              |          |               |  |  |  |
|                                     |              |          | ♦ Move Down   |  |  |  |
|                                     |              |          | Сору          |  |  |  |
|                                     |              |          | 🗎 Paste       |  |  |  |
|                                     |              |          | 🐰 Cut         |  |  |  |
|                                     |              |          |               |  |  |  |
| Note: Z-divisions are set by layer. |              |          |               |  |  |  |
|                                     |              |          | OK Caral      |  |  |  |
|                                     |              |          | Cancel        |  |  |  |



# **Conceptual Model: Radial Mesh**



- Same as a TOUGH2 Meshmaker R-Z (radially symmetric) mesh
- Represents a group of 1D or 2D cylindrical model cells (shaped like doughnuts)
- Wells are typically placed in the "center" of the grid to simulate injection or production





# **Conceptual Model: Radial Mesh**



- In PetraSim, displayed as a 2D slice through the radius of the cylinder
- Good for simple models of injection/production (often used for CO2 modeling)
- Impossible to accurately represent nonhorizontal geological units





#### **Conceptual Model: Radial Mesh**



- The only parameter needed to create the mesh is the radial divisions, which correspond to the X divisions in the resulting mesh.
- When creating this type of mesh, you should make the spacing in the Y direction 1 m.



# **Conceptual Model: Review**







# **Conceptual Model: Review**



- Polygonal Mesh (refined around wells)
- Multiple Conceptual Layers
- Cell layer thickness varies with Conceptual Layers







# Three types of boundary conditions available in PetraSim/TOUGH2:

- No Flow (Neumann)
- Constant (Dirichlet)
- Sinks/Sources for fluid, gas, heat, etc.
- Time-based


# Conceptual Model: closed boundary



- By DEFAULT, all boundaries of a TOUGH2 model are closed.
- Injection/production in and out of a closed model can cause unrealistic pressures that will cause the simulation to stop.
- Solution is to use a very large model extents, or to open up the boundary of the model to allow flow in and out



No connections, closed boundary

# Conceptual Model: fixed value boundary



- Dirichlet boundaries are typically created using the "Fixed State" cell option in PetraSim
- Depending on the simulator, PetraSim will either make the volume of a Fixed State cell very large, or will make it an inactive cell in the input file



## Conceptual Model: fixed values boundary



- Be open to fluid/gas and heat flow.
- Will have a fixed pressure and temperature (and state) based on the initial condition of the cell
- Flow in and out of the cell has no affect on the state of the cell because of the very large volume





# Conceptual Model: fixed values boundary



- Requires that you create special materials that are assigned to the boundary cells.
- For visual purposes, we recommend that you make these cells very thin along the boundary of the model (or used "Extra Cells").



## Conceptual Model: fixed pressure boundary



- Make the thermal conductivity of the cell equal to 0 and make the cell "fixed state"
- Fluid will flow in and out of the cell with a very large volume, and pressure will not change
- Cell will not contribute heat to the model or absorb heat, and the heat in the cell will not change

|                       | Material Data                                                                                                                                                                                                                                                                       | ×                                                                                        |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Materials             | Matrix Fracture                                                                                                                                                                                                                                                                     |                                                                                          |
| ConP<br>New<br>Delete | Name - MAT:<br>Description:<br>Color:<br>Density - DROK (kg/m^3):<br>Porosity - POR:<br>X Permeability - PER(1) (m^2):<br>Y Permeability - PER(2) (m^2):<br>Z Permeability - PER(3) (m^2):<br>Wet Heat Conductivity - CWET (W/m-C):<br>Specific Heat - SPHT (J/kg-C):<br>Additional | ConP<br>2600.0<br>0.1<br>1.0E-13<br>1.0E-13<br>1.0E-13<br>0.0<br>1000.0<br>Material Data |
|                       | Apply                                                                                                                                                                                                                                                                               | OK Cancel                                                                                |

77

# Conceptual Model: fixed temperature boundary

- Make the thermal permeability and porosity of the cell very small and make the cell "Fixed State"
- Cell will act as a closed boundary to flow
- Cell will act as a constant sink or source of heat based on the initial temperature of the cell

|                               | Material Data                                                                                                                                                                                                                       | ×                                                  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|
| Materials                     | Matrix Fracture                                                                                                                                                                                                                     |                                                    |  |
| ConP<br>ConT<br>New<br>Delete | Name - MAT:<br>Description:<br>Color:<br>Density - DROK (kg/m^3):<br>Porosity - POR:<br>X Permeability - PER(1) (m^2):<br>Y Permeability - PER(2) (m^2):<br>Z Permeability - PER(3) (m^2):<br>Wathlast Conductivity - CMTT (M/m 2): | ConT<br>2600.0<br>1e-10<br>1e-50<br>1e-50<br>1e-50 |  |
|                               | Specific Heat - SPHT (J/kg-C): 1000.0<br>Additional Material Data<br>Apply OK Cancel                                                                                                                                                |                                                    |  |







- Used to define flow into or out of the cell
- Used to represent injection, production, recharge, a heat source, etc.
- Right click on a cell or group of cells to Edit the Properties and add sinks/sources.
- Sinks/sources available for heat, fluid, gas, NAPL, etc. (dependent on the EOS module)

|                         | Edit Ce              | ll Data                        | ×         |
|-------------------------|----------------------|--------------------------------|-----------|
| Properties Sources/Sink | s Initial Conditions | Print Options                  |           |
| Heat                    |                      |                                |           |
| Heat In:                | Constant v           | Rate (J/s):                    | 0.0       |
| Production              |                      |                                |           |
| Mass Out:               | Constant v           | Rate (kg/s):                   | 0.0       |
| Well on Deliv.:         | Productivity Index - | PI (m^3):                      | 0.0       |
|                         | Pressure (Pa):       |                                | 0.0       |
| Well from File:         |                      |                                |           |
|                         | Productivity Index - | • PI (m^3):                    | 0.0       |
| Injection               |                      |                                |           |
| Water/Steam:            | Constant v           | Rate (kg/s):                   | 0.0       |
|                         |                      | Enthalpy <mark>(</mark> J/kg): | 0.0       |
| Air:                    | Constant v           | Rate (kg/s):                   | 0.0       |
|                         |                      | Enthalpy (J/kg):               | 0.0       |
|                         |                      | Γ                              | OK Cancel |
|                         |                      |                                |           |



# Conceptual Model: Source/Sink

Heat, Injection, Mass Out options include:

- Constant (J/s or Kg/s)
- Table-Based
- Constant Flux (<sup>J/s</sup>/m<sup>2</sup> or <sup>Kg/s</sup>/m<sup>2</sup>) based on top area of cell
- Table Flux

|                         | Edit Ce              | II Data          |       |
|-------------------------|----------------------|------------------|-------|
| Properties Sources/Sink | s Initial Conditions | Print Options    |       |
| Heat                    |                      |                  |       |
| Heat In:                | Constant v           | Rate (J/s):      | 0.0   |
| Production              |                      |                  |       |
| Mass Out:               | Constant v           | Rate (kg/s):     | 0.0   |
| Well on Deliv.:         | Productivity Index   | - PI (m^3):      | 0.0   |
|                         | Pressure (Pa):       |                  | 0.0   |
| Well from File:         |                      |                  |       |
|                         | Productivity Index   | - PI (m^3):      | .0    |
| Injection               |                      |                  |       |
| ✓ Water/Steam:          | Constant 🗸           | Rate (kg/s):     | 0.0   |
|                         | Constant<br>Table    | Enthalpy (J/kg): | 0.0   |
| Air:                    | Constant Flux        | Rate (kg/s):     | 0.0   |
|                         | THORE THUS           | Enthalpy (J/kg): | 0.0   |
|                         | 1                    |                  |       |
|                         | 1                    |                  | OK Ca |







#### THANKS FOR YOUR KIND ATTENTION