Collider Physics at eTe™ Colliders

To begin these lectures, I will review some aspects of the interaction of massless
fermions and vector bosons. At the energies of the LHC, it is a good approximation to
ignore all quark masses except for that of the top quark. It will be good to establish
some notation to describe massless fermions.

You all know that a spin-1/2 particle is described by the Dirac equation
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If we ignore the mass term, this equation splits into two 2-component equations
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The two equations are related by the fact that, if ¢, satisfies the first equation, then
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satisfies the second.

We can write explicit solutions to these equation that we can then use throughout
the course. Begin with the equation for the left-handed fermion field . These have
the form
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where p? = 0 and u(p) is a 2-component spinor. For 7| 3,
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The spinors are normalized to



and the spin orientation is left-handed with respect to 3, as we should expect. The
form of the spinor for a general direction of 7 is found by rotating this solution. I
will always try where it is possible to set up a 2-body scattering process in the hat3-1
plane,
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The antiparticle of a left-handed fermion is a right-handed antifermion. This corre-
sponds to a solution to the Weyl equation

+71p¥
q‘hﬁ) 3 ’U?_(?) € J

The spinor vg(p) obeys
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and this is the same equation, with the same solutions, as before. It is straightfor-
ward to derive the complementary results for right-handed fermions and left-handed
antifermions.

Then, we have the set of 2-component spinors
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It is very convenient to also record the spinors for particles moving in the opposite
direction
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The spinors we have derived here play the same role in calculation as the polariza-
tion vectors for vector particles. For vectors, it is more obvious what the appropriate
vectors should be. In the rest frame of a massive vector particle, there are 3 distinct
polarization vectors corresponding to right-handed, zero, and left-handed spin about

the 3 axis,
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Boosting these vectors in the 3 direction gives
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It is apparent that something goes wrong with the 0 polarization states as m — 0
or F — oo. Fortunately, for massless vector bosons, the 0 polarization state does not
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exist. Only the R and L states are produced as physical states by gauge-invariant
interactions. For massive vector bosons, the polarization state 0 must exist, and we
will eventually need to understand its properties. I will discuss this set of questions
in lecture 5 of this series.

The R and L polarization vectors rotated to an angle 6 in the 3-1 plane are
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and those rotated to the opposite direction are
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I will now make some use of these formulae by recalling the properties of the
simplest QED process, ete™ — ptu~. For definiteness, consider the state with
definite spins ey e} — uz k.

The matrix element for this scattering process is
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Setting 7 || 3, we can compute
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This is exactly the left-handed polarization vector for the intermediate virtual photon,
as we might have expected from angular momentum conservation
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For an initial state at an angle with respect to the 3 axis,
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we have
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which is just the appropriate rotation of this vector. We now recognize
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and, similarly, you can show
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We can use these results in two ways. First, we can use the find the angular

dependence of the annihilation reaction e;ef — pzuk. The matrix element above
becomes
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and, similarly,

\
Tk do (-4 -
WSO ) R Gwe) - (e i

These equations give the familiar canonical results for ete™ annihilation
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Another use of these formulae is to derive the angular dependence of the fermionic
decays of a massive vector boson. For coupling to a left-handed fermion, we have
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At the LHC, the reactions that are of most interest have momentum transfers
much larger than 100 GeV. In tbhis regime, the weak interactions bosons W and Z
play an important role. In fact, at these energies, we are above the energy scale of
electroweak unification, so the W, Z, and photon are all on the same footing. The
clectroweak theory has order-1 parity violation. Thus, there does not need to be any
symmetry between the production of the parity-conjugate L and R states. If we can
identify W and Z bosons, in particular, in their leptonic decays where the fermion and
antifermion are distinguished, we can use the angular distributions above to identify
the W and Z polarizations and obtain additional insight into the dynamics.



It will be very useful to work out the properties of the W and Z. The electroweak
boson couplings to quarks and leptons are determined by the covariant derivatives of
SU(2) x U(1). I hope you are very familiar with these:
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I will use the abbreviations
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A partial width of the W to leptons is given by
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and The partial widths are the same for all three lepton doublets
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up to very small mass effects. For the two accessible quark doublets
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the rate of a W decay is multiplied by
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To evaluate these formula and other in this course, it will be good to have a standard
set of coupling constants. All Standard Model couplings run according to the renor-
malization group, so I will canonically quote the values at () = mz. You might want
to memorize these values:
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The strong interaction coupling is also a weak coupling at high energies because of
asymptotic freedom. At LHC energies, it is not so much larger than the electroweak
couplings
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Using the values above, we find for the W boson width
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with the branching ratios

Ba(ev) = BRI = BR(<y) = 19
BR(wI) - BR(G) = 349,

Figures 1-3 show some ete™ — WHIW~ events recorded at LEP, a 200 GeV ete”
collider operated at CERN in the 1990’s, showing W decays into hadronic and leptonic
final states.

We can go through the same analysis to find the properties of the Z. The partial
width for a Z decay to left-handed fermions is obtained from the matrix element
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Following the same route as for the W, we obtain
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The factors @z are quite different for the various Standard Model species of quarks
and leptons. It is useful to make a table; Let S; and Ay be the combinations of Z
charges,
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Sy gives the total rate for Z decay into a given species. Ay gives the asymmetry
between left- and right-handed fermions appearing in the decay. Then the Z charges
are
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The small shift in the b coupling to the Z is due to the contribution of diagrams
involving the top quark

L 2
The branching ratios are, then
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BR(vv,) = €639 BR(2v) = 202
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These branching ratios are very well verified experimentally. In the 1990’s, experi-
ments at LEP and at the SLC collider at SLAC produced a large sample of eTe™ — Z
events and observed the Z decaying at rest. Figures 4-6 show some Z decays recorded
by the SLD detector at the SLC, illustrating some of these classes of Z decays.

There is no time in the course for a complete discussion of experimentation in
collider physics. But I would like to say a few words about how events are recorded
in collider detectors and how to interpret these figures. A schematic plan of one of
the LEP detectors is shown in Fig. 7. The ete™ collision is arranged to occur in
the center of the detector. A high energy collision—after the decay of short-lived
particles—produces 6 types of long-lived elementary particles, for which the detector
should try to observe as many as possible. These are: '

1. electrons

2. photons (mainly from 7% — 2, but also directly produced)
3. long-lived charged hadrons (7, K, p, ...)

4. long-lived neutral hadrons (n, K% A°, ...)

5. muons

6. neutrinos

The detector should be designed to measure the momenta of as many particles over
as large a solid angle as possible. It is a challenge, because a detector for one type of
particle will interact with all other types and degrade their measurement.

The basic design used to measure particles at colliders was introduced in the Mark
I experiment of the 1970’s at SLAC, the experiment that also discovered the 1) family
of particles, the charmed particles, and the 7 lepton. The idea was the construct the
detector as a barrel around the interaction point, in such a way that each inner layer
minimally compromises the measurements in the outer layers.

The most precise measurements are those of the trajectories of charged particles
in a magnetic field. So the interior of the detector is mostly empty space, with a
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gas chamber or silicon devices to measured the tracks of charged particles from their
ionization. Modern detectors also contain high-precision silicon sensors very close to
the interaction point.

The next types of particles to measure are electrons and photons.. Above an
energy of about 10 MeV, electrons radiate hard photons as they pass through matter,
and photons convert to electron-positron pairs. This gives rise to an electromagnetic
showers in which the number of electrons, positrons, and photons multiplies.
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Measurement of the ionization within the shower gives the total energy of the electron
or positron that initiated it. A detector built on this principle is called an electromag-
netic calorimenter; The characteristic length for multiplication in a shower is called
the radiation length. A high-Z material such as Pb has a radiation length of about
0.5 cm; then a 17-cm thickness corresponds to 30 radiation lengths, enough to contain
an electromagnetic shower. The same thickness of Pb corresponds to about 1 nuclear
interaction length.

Ourside the electromagnetic calorimeter, one can switch to a cheaper material
such as Fe and to coarser segmentation. In a few hundred cm of Fe, an initial 7% or n
will create a hadronic shower, giving a basis for hadronic total energy measurement.
Finally, any charged particle that can go through the hadron calorimeter is probably
a muon, and one can put ionization detectors on the outside of the detector to iden-
tify these particles and determine their trajectories. Neutrinos — and other possible
neutral, weakly-interacting particles — are invisible to collider detectors.

Some typical performance estimates, for guidance only are:
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The important information to take away from these equations is the way that the
measurement accuracy depends on the value. In particular, calorimetry becomes
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more accurate for large energy deposition. momentum measurement loses accuracy
for very high-energy tracks, and even the sign of a multi-TeV muon can be uncertain.

There is an important complication in this design: The detector must also contain
a solenoidal magnet to producee the magnetic field needed to bend the trajectories of
charged particles. A superconducting magnet with its cryostat contributes about 2
radiation lengths of material. So, one has a choice whether to put the electromagnetic
calorimeter outside the coil and have its measurement compromised or to put the
calorimeter inside the coil and pay for a larger and more difficult magnet. At the
LHC, ATLAS and CMS made opposite choices here.

With the detector laid out in this way, you see the main components reflected in
the event displays. Charged particle tracks are shown explicitly in the interior, and
energy deposition in the calorimeter layers is also indicated. Then, for example, a
track leading to a large electromagnetic deposition signals an electron.

The way the detectors see quarks needs to be qualified a bit. In the fraction of Z
decay events corresponding to Z — ¢g, what we actually see is a collimated stream
of strongly interaction particles, mainly pions. In typical events, two such streams
are emitted back-to-back. These streams are called “jets”. In collider physics, jets
are the observable manifestation of quarks and gluons emitted in the high-energy
reactions. Jets are not hard to recognize in the pictures but are rather subtle to
describe quantitatively. I will discuss the formation and structure of jets in lecture
3 of this series. In Z — ¢q decays, we have some evidence that the jets represent
quarks in the fact that the angular distribution of the jet axes follows the predicted
dependence
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The data from the ALEPH detector at LEP is shown in Fig. 8.

It is important to note that the charm and bottom quarks are short-lived, so the
presence of these quarks must be inferred from their decay products. The bottom
quark has a longer lifetime of 1.5 ps, corresponding to a cr of 0.5 mm, typically
enhanced by a Lorentz boost. Decay vertices a few mm from the collision point can
be identified by precision silicon tracking detectors, giving a way to tag the production
of b quarks and, to some extent ¢ quarks also.

The 7 lepton shows up in detectors in a wide variety of ways. The 7 decays to a v,
which may be accompanied by either hadrons or leptons. The dominant branching
fractions of the T are
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So events with 7 pairs fall into a number of different categories — 2 lepton, 1 lepton
plus 1 hadron, etc. In ete™ collisions, the most characteristic topology for the 7% is
1 pion plus 3 pions.

Using these techniques, the LEP and SLC detectors made it possible to separate
the various Z decays and measure their branching fractions. Some notable results

SRR N

9 T(=z =Ff) 0., 20398 DAW)

T(R->1LD)
T (2 hadow)

T (G 249 24eSUs) 24752

The quantities A in the table above, giving the left /right polarization asymme-
tries, are also observable. These cover a large range, from 15% for leptons to 93%
for d quarks. These predictions have also been tested using 7 decays at LEP and
experiments with polarized electron beams at the SLC. Some results are
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So, the couplings of the Z and, by extension, the structure of the electroweak inter-
actions in the Standard Model, is very well confirmed experimentally.
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The parity asymmetries of the weak interactions show up as forward-backward
asymmetries in ete™ — ff even when we average and sum over polarizations. The
differential cross section for ete™ — ff, taking into account y-Z interforence, is
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You can see the constructive mtuiorou(e in ‘d]e first mo of the result and the e-
structive interference in the second line, so there is a forward-backward asymmetry
that becomes of order 1 for s > m%. The total cross section is shown in Fig. 9, along
with measurements at LEP, SLC, and lower energy colliders. This has a prominent
resonance at the Z, with a discontinuity in the normalization on the two sides of the
resonance resulting from the interference.

It is quite interesting to take the limit s 3> m?%. Then the first square in the result
above becomes
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The answer is what we would expect for an unbroken SU(2) x U(1) model
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You can check that this works for the other contributions as well. This limit of high
energy, with manifest SU(2) x U(1) symmetry, is very useful to understand many
aspects of the physics at the LHC.
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