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QCD: quantum chromodynamics
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Understanding the physics of proton-proton collisions requires the 
understanding of the proton structure, and of the interactions 
among its elementary constituents, quarks and gluons. 

These interactions are described by quantum chromodynamics, a gauge 
theory, with SU(3) symmetry group, whose charge is called color

Gluons: force carriers, in the adjoint representation, 8, of SU(3)

Quarks: matter fields, in the fundamental representation, 3, of SU(3)

QCD is characterized by

asymptotic freedom: the strength of the coupling constant decreases at short 
distance, where colored partons can be treated as free particles

confinement: the potential grows linearly at large distance, confining colored objects 
into color-singlet systems (hadrons)



QCD is to particle physics 
what EM and QM are to 

chemistry: it’s omnipresent

• hadronic spectroscopy and transitions (scattering, decays, etc)

• EW properties of quarks (“CKM physics”): K, D, B decays

• proton structure (DIS, polarized DIS, diffraction, ..... )

• e+ e–  to hadrons (determination of αS, non-PT effects, ... )

• jet physics (in ee, ep and pp(bar) collisions)

• quark-gluon plasma (relativistic heavy-ion collisions)

• ....
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.. things I’ll give for granted you know ..

• quarks and gluons

• mesons and baryons

• asymptotic freedom

• Feynman diagrams and Feynman rules

• basic knowledge of what high-energy hadronic collisions are 
about:

• production and study of jets, heavy quarks (bottom, top)

• production and study of  W/Z bosons, 

• production and study of Higgs bosons, 

• search for phenomena beyond the Standard Model 
(supersymmetry, dark matter, new gauge forces, etc.)
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Outline
1. Introduction to the theoretical principles of hadron collisions: 

1.1. Factorization, initial state evolution of PDFs

1.2. Drell-Yan observables

2. Introduction to the theoretical principles of hadron collisions:  

2.1. final state evolution, turning quarks and gluons into hadrons

2.2. jet production

3. Phenomenological applications, review and interpretation of 
LHC data 

4. QCD phenomena at future hadron colliders
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Factorization Theorem

€ 

dσ
dX

= f j (x1,Qi ) fk (x2,Qi )
d ˆ σ jk(Qi ,Qf )

d ˆ X 
F( ˆ X → X;Qi ,Qf )

ˆ X 
∫

j,k
∑

€ 

ˆ σ  f(x,Qi )  

€ 

ˆ X 

€ 

XF

€ 

F( ˆ X → X;Qi ,Qf )

§  transition from partonic final 
state to the hadronic observable 
(hadronization, fragm. function, 
jet definition, etc)
§  Sum over all histories with X 
in them

€ 

f j (x,Q)
§  sum over all initial state 
histories leading, at the 
scale Q, to: 

  

€ 

 
p j = x

 
P proton

Parton distribution 
functions (PDF)
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Universality of parton densities and 
factorization, an intuitive picture
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Assuming 
asymptotic 
freedom!

q qExchange of hard gluons among 
quarks inside the proton is 
suppressed by powers of (mp/Q)2

q>Q⇠
Z •

Q

d4q
q6 ⇠ 1

Q2

1)

Typical time-scale of interactions 
binding the proton is therefore  of 
O(1/mp) (in a frame in which the proton 
has energy E, τ=γ/mp = E/mp2)

τ≈1/mp

2)

If a hard probe (Q>>mp) hits the proton, on a time scale =1/Q, there is no 
time for quarks to negotiate a coherent response. The struck quark 
receives no feedback from its pals, and acts as a free particle

3)



➡ Universality of f(x)

However, since τ(q≈1GeV)>>1/Q, the emission of low-virtuality gluons will take 
place long before the hard collision, and therefore cannot depend on the detailed 
nature of the hard probe. While it is not calculable in pQCD, f(q<<Q)  can be 
measured using a reference probe, and used elsewhere  

As a result, to study inclusive processes at large Q it is sufficient to consider 
the interactions between the external probe and a single parton:

1) xbefore ≠ xafter ⇒affect f(x)!

2) for q≈1 GeV not calculable in pQCD

Q

1) calculable in perturbative QCD (pQCD)
2) do not affect f(x): xbefore = xafter

q>Q

q

q<Q

This gluon cannot be 
reabsorbed because 
the quark is gone



Q dependence of 
parton densities

The larger is Q, the more gluons will not have time to be reabsorbed

PDF’s depend on Q!

f (x,Q) = f (x,µ) +
Z 1

x
dxin f (xin,µ)

Z Q

µ
dq2

Z 1

0
dyP(y,q2)δ(x� yxin)
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μ
x
in

μ>q

x=x
in

Q>μ

x= y x
in

μ>q

x=x
in



f (x,Q) = f (x,µ) +
Z 1

x
dxin f (xin,µ)

Z Q

µ
dq2

Z 1

0
dyP(y,q2)δ(x� yxin)

f(x,Q) should be independent of the intermediate scale μ considered:

d f (x,Q)
dµ2

= 0 ) d f (x,µ)
dµ2

=
Z 1

x

dy
y
f (y,µ)P(x/y,µ2)

One can prove that: 

and finally (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi DGLAP equation):

P(x,Q2) =
αs
2π

1
Q2

P(x)
calculable in pQCD

d f (x,µ)
d logµ2

=
αs
2π

Z 1

x

dy
y
f (y,µ)P(x/y)



More in general, one should consider additional processes which lead to the 

evolution of partons at high Q (t=logQ2):

dq(x,Q)
dt

=
αs
2π

Z 1

x

dy
y


q(y,Q)Pqq(

x
y
) + g(y,Q)Pqg(

x
y
)
�

dg(x,Q)
dt

=
αs
2π

Z 1

x

dy
y

"
g(y,Q)Pgg(

x
y
) + ∑

q,  q
q(y,Q)Pgq(

x
y
)

#

Pqq(x) =CF
✓
1+ x2

1� x

◆

+

Pqg(x) =
1
2
⇥
x2+(1� x)2

⇤

Pgq(x) =CF
✓
1+(1� x)2

x

◆

Pgg(x) = 2Nc


x
(1� x)+

+
1� x
x

+ x(1� x)
�
+δ(1� x)

✓
11Nc�2n f
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◆

[g(x)]+ :
Z 1

0
dx f (x)g(x)+ ⌘

Z 1

0
[ f (x)� f (1)]g(x)dx
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Note: origin of logs

p

k

p-k

(p� k)2 = �2 p0 k0 (1� cosqpk )

Helicity 
conservation 
~ p· k

1/2 → 3/2

1/2 → -1/2

Soft 
divergence

Collinear 
divergence

|M|2 ⇠


1
(p� k)2

�2

⇥ (p · k) ! 1
p0

dk0

k0
dq
q



k0 →0 ⇒ xout = xin

xoutxin

Soft emission cannot lead to a physical 
divergence, however, since it is not observable

The soft-emission divergence must cancel 
against the IR divergence of the virtual diagram

xin xout

The cancellation cannot take place in the case of 
collinear divergence, since xout ≠ xin , so virtual 
and real configurations are not equivalent



Things are different if p0 →0. In this case, again, xout ≠ xin , no 
virtual-real cancellation takes place, and an extra singularity due 
to the 1/p0 pole appears

These are called small-x logarithms. They give rise to the double-log 
growth of the number of gluons at small x and large Q

p0 →0 ⇒ 

xout →0

xin



Example: charm in the proton

g(x,Q)⇠ A/xAssuming a typical behaviour of the gluon density:

c(x,Q) ⇠ αs
6π
log(

Q2

m2c
) g(x,Q)and therefore:

Corrections to this simple formula will arise due to the Q dependence of g(x) and of αs

dc(x,Q)
dt

=
αs
2π

Z 1

x

dy
y
g(x/y,Q)Pqg(y) =

αs
2π

Z 1

x
dy
A
x
1
2
[y2+(1� y)2] =

αs
6π

A
x

dc(x,Q)
dt

=
αs
2π

Z 1

x

dy
y
g(y,Q)Pqg(

x
y
)c

c
_

and using Pqg(x) =
1
2
⇥
x2+(1� x)2

⇤
we get:
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Numerical example
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Excellent agreement, given the simplicity of the approximation!

Can be improved by tuning the argument of the log (threshold 
onset), including a better parameterization of g(x), etc....



General properties of the PDF evolution
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gn =
Z 1

0

dx

x

x

n
g(x)

df (n)
i

dt
=

↵s

2⇡
[P (n)

qq f (n)
i + P (n)

qg f (n)
g ]

df (n)
g

dt
=

↵s

2⇡
[P (n)

gg fg + P (n)
gq f (n)

i ]

V (x) =
X

i

fi(x)�
X

ı̄

fı̄(x)

⌃(x) =
X

i

fi(x) +
X

ı̄

fı̄(x)
dV (n)

dt
=

↵s

2⇡
P (n)

qq V (n)

d⌃(n)

dt
=

↵s

2⇡

h
P (n)

qq ⌃(n) + 2nf P (n)
qg f (n)

g

i

df (n)
g

dt
=

↵s

2⇡

h
P (n)

gq ⌃(n) + P (n)
gg f (n)

g

i

Definition of n-th moment:

In moment space, the evolution eqs become coupled linear differential equations

or, equivalently:

where we define “singlet” and 
“valence” distributions as:

exercise!
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dV (1)

dt
⌘ 0) ↵s

2⇡
P (1)

qq V (1) = 0

Pqq(z)!
✓

1 + z2

1� z

◆

+

⌘ 1 + z2

1� z
� �(1� z)

Z 1

0
dy

✓
1 + y2

1� y

◆

Z 1

0
dx f(x) [g(x)]+ ⌘

Z 1

0
dx [f(x)� f(1)] g(x)

V

(1) =
Z 1

0
dx

X

q

(fq(x)� fq̄(x)) = N(valence quarks) = constant

Valence sum rule

Z 1

0
dz Pqq(z) = 0

Subtraction of the 
virtual singularity

Since V(1)=3, we must have Pqq(1)=0, i.e.

This requires to modify Pqq(z) as follows:

Thus
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Z 1

0
dx x

2

4
X

i,i

fi(x) + fg(x)

3

5 ⌘ ⌃(2) + f

(2)
g = 1

Pgg ! 2CA

⇢
x

(1� x)+
+

1� x

x

+ x(1� x)
�

+ �(1� x)

11CA � 2nf

6

�

Momentum sum rule (exercise)

P (2)
qq + P (2)

gq = 0

P (2)
gg + 2nf P (2)

qg = 0

This implies

(1)

(2)

(1) is trivially true (check!)

(2) requires a modification of Pgg to subtract soft virtual singularity (verify!):

Subtraction of 
quark loop in 
virtual diagrams

Subtraction of 
gluon loop in 
virtual diagrams



General solution of the PDF evolution
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V (n)
(Q2

) = V (n)
(µ2

)


log Q2/⇤

2

log µ2/⇤

2

�P (n)
qq /2⇡b0

= V (n)
(µ2

)


↵s(µ2

)

↵s(Q2
)

�P (n)
qq /2⇡b0

Verify that all moments Pqq(n) are negative. Therefore as Q grows, all moments decrease. 
The valence distribution becomes softer and softer.

For Σ(n) and g(n) one needs to diagonalize the 2x2 matrix. In the case of n=2, 
corresponding to the momentum fraction carried by gluons and quarks, simple 
asymptotic solutions (Q2→∞) can be obtained (exercise!):

P (2)
qq ⌃(2) + 2nf P (2)

qg f (2)
g = 0

⌃(2) + f (2)
g = 1

⌃(2) =
1

1 + 4CF
nf

f (2)
g =

4CF

4CF + nf

g(2)

⌃(2)
=

4CF

nf
=

16
3nf

(Σ(2) → constant at large Q)

(sum rule){

{

* see footnote next page

*



Footnote: αS running
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↵s(µ
2
) =

1

b0 log µ2/⇤

2

d↵s(µ2
)

d log µ2
= �(↵s)

�(↵s) = �b0↵
2
s (1 + b0↵s + . . .) b0 =

11CA � 2nf

12⇡

b0 =
17C2

A � 5CAnf � 3CF nf

2⇡(11CA � 2nf )

↵s(µ
2
) =

1

b0 log µ2/⇤

2


1� b0

b0

log log µ2/⇤

2

log µ2/⇤

2

�

At LO

At NLO

LO NLO

β(α) for QCD is known up to 
NNNLO (4-loops)



Note:
sea ≈10% glue

Note:
charm≈up at 
high Q

Examples of PDFs and their evolution

Valence up Sea up

Gluon All, at Q=1TeV
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Example:
Drell-Yan 
processes

• Clean final state (no hadrons from the hard process)

• Tests of QCD:  σ(W,Z) known up to NNLO (2-loops)

• Measure SM parameters: m(W), sin2θW

• constrain PDFs (e.g. fup(x)/fdown(x))

• search for new gauge bosons: 

• Probe contact interactions: 

W ! `ν

Z! `+`�

q

q
_

Properties/Goals of the measurement:

23

qq→e+e––
qq→W’, Z’–



Some useful relations and definitions

y=
1
2
log

EW + pzW
EW � pzW

η = � log(tan θ
2
)

tanθ =
pT
pz

pT =
q
p2x + p2y

Rapidity: Pseudorapidity:

Exercise: prove that for a massless particle rapidity=pseudorapidity:

where:
and

⇢
EW = (x1+ x2)Ebeam
pzW = (x1� x2)Ebeam

) y=
1
2
log

x1
x2

τ=
ŝ
S

= x1x2

x1,2 =
p
τe±y dx1dx2 = dydτ

dy=
dx1
x1

dτδ(ŝ�m2W) =
1
S

Exercise: using                           and 

prove the following relations:
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LO Cross-section calculation

∑
spin,col

|M(q  q0 !W )|2 =
1
3

1
4

8g2
W |Vqq0|2ŝ =

2
3
GFm2

Wp
2

|Vqq0|2ŝ
where:

leading to:

σ(pp!W ) = ∑
i j

πAi j
m2W

τ
Z 1

τ

dx
x
fi(x,Q) f j(

τ
x
,Q) ⌘ ∑

i j

πAi j
m2W

τLi j(τ)

where:

πAu  d
m2
W

= 6.5nb and τ=
m2
W
S

25

s(pp !W ) = Â
q,q0

Z
dx1dx2 f

q

(x1,Q) f

q̄

0(x2,Q)
1
2ŝ

Z
d[PS] Â

spin,col

|M(qq̄

0 !W )|2

= 2pd4pW d(p2
W �m2

W)d4(Pin� pW) = 2pd(ŝ�m2
W)

d[PS] =
d3pW

(2p)32p0
W

(2p)4 d4(Pin� pW)

→

→

Partonic 
Luminosity



Exercise: Study the function τL(τ)
Assume, for example,  that f (x)⇠ 1

x1+δ
, 0< δ< 1

Then: L(τ) =
Z 1

τ

dx
x

1
x1+δ

(
x
τ
)1+δ =

1
τ1+δ

log(
1
τ
)

and:

Therefore the W cross-section grows at least logarithmically with the 
hadronic CM energy. This is a typical behavior of cross-sections for 
production of fixed-mass objects in hadronic collisions, contrary to the 
case of e+e- collisions, where cross-sections tend to decrease with CM 
energy. 
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sW = s0

W

✓
S

m2

W

◆d
log

✓
S

mW

◆

2
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PDF luminosity uncertainties -- NLO -- 2011

G. Watt, http://arXiv.org/pdf/1106.5788



Example: gg->H cross section
G. Watt, http://arXiv.org/pdf/1106.5788
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See PDF4LHC mtg, Apr 13 2015 

PDF luminosity uncertainties -- NLO -- 2015

Systematics for 
Higgs cross 
section


