The Goldstone Boson Equivalence Theorem

After this introduction to LHC physics, I would like to take up a theoretical topic
that plays an important role in the physics of high-energy colliders. To begin, recall
some results from our discussion in the first lecture of vector boson polarizations. A
massless vector boson has two polarization states, R and L, related in a clear way
to the two possible values of the boson helicity. A massive vector boson has three
polarization states. The third of these, the longitudinal polarization vector, has the
strange-looking form (for 7 || 3)
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This polarization vector has the property that
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and yet obeys

2 P = O

as required for a polarization vector.

Potentially, the large size of the components of this vector can lead to large results
for amplitidues correspoinding to the emission and absorption of vector bosons. For
example, the W boson coupling to electromagnetism contains the term
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similar to the coupling to scalar fields, but with an extra factor of e*(ky) - e*(k_).
This seems to lead to the result
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It is easy to find other examples in which individual diagrams involving longitudinal
W bosons are enhanced over our simpler expectations by factors of Ey /my .

Are these enhancements real or spurious? The answer to this question is not
simple. But there is an organizing principle that can be applied. A part of the
logic of the Standard Model is the statement that a vector boson can obtain mass
only through spontaneous symmetry breaking of its corresponding gauge symmetry.
The Goldstone boson of the system with spontaneous symmetry breaking gives the
extra degree of freedom needed to give the vector boson a third polarization state.
We will see that the form of the longitudinal polarization vector given above is just
what is needed so that, at high energy, the longitudinal polarization state retains the
properties of this Goldstone boson.

The description of the degrees of freedom of a vector boson is gauge-dependent.
In the Feynman-‘t Hooft gauge, the vector boson has four polarization states with
the propagator
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and the Goldstone boson also appears in calculations as a scalar with mass m. The
timelike polarization state of the gauge boson has negative metric

(»

o ot
[ OP ) QP' ] = -~ ('ltt)3 g(?:_fi')

so it counts as a negative degree of freedom. The properties of the vector boson
results from calcellations among the timelike and longitudinal polarization states and



the Goldstomboson. In the unitary gauge, the Goldstone boson is gauged away, and
the gauge boson propagator becomes
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The factor p#p” /m? expresses the growth of the longitudinal polarization state that
we saw earlier.

For a vector boson at rest, the three polarization states are equivalent, related
simply by spatial rotations. However, for a highly boosted vector boson, especially in
the regime p° >> m in which we can ignore the boson mass, we might expect that the
different character of the polarization states would become apparent. And, indeed,

there is a theorem on this point, called the “Goldstone Boson Equivalence Theorem”
(GBET):
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This result was first enuciated by Cornwall and Tiktopoulos and Vayonakis. You can
find a careful proof of the theorem, applicable to the case in which a process emits
several high-energy vector bosons, in a beautiful paper of Chanowitz and Gaillard
(Nucl. Phys. B 261, 379 (1985)). In this lecture, I will not give a proof of the
theorem, but I will give illustrative examples of different types.

One of the nicest examples of the GBET comes in the theory of the decays of the
top quark. In lecture 4, we saw that the top quark decays to an on-shell W boson
and a b quark, leading to a variety of final states with 3 fermions. It is interesting to
compute the decay width of the top quark for the various possible polarization states
of the final W. In this discussion, I will ignore the mass of the b quark for simplicity.

The matrix element for ¢ decay is
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For a top quark at rest, we have
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It is easiest to work in the frame in which the W boson is produced in the 3 direction.
The results can be interpreted by rotating the top quark spin to the 3 direction and
the W to the polar angle . Then the setup is
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and W polarization vectors
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The amplitude for the decay t — Wgb is given by
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We might have expected this vanishing because the state Wgb, has spin g
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For the decay to Wb, we find
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For the decay to the longitudinal polarization state Wy, we find
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Summing these contributions, the total decay rate is
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or, finally,
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Something is odd here. We expected a result of the order of
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but instead we found the dependence
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It is not so hard to trace the origin of the enhancement. It is associated with the
large values of the components of the longitudinal W polarization vector. If we had

summed over polarizations at an earlier stage, using
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the large factor would have come from the term in this expression
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But, is the enhancement really there?

We can get some insight by evaluating the right-hand side of the GBET. The
Goldstone boson of the Higgs field couples to the top quark through the Yukawa

coupling
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The coefficient ¥, is the coupling that generates the top quark mass through
My = GV
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This vertex gives rise to a top quark decay amplitude
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This is exactly what we found in the direct calculation of the amplitude for ¢ — Wb,
since the prefactor in that expression can be simplified to
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So, the enhancement of the top quark decay rate by the factor m?/m¥, has a physical
origin. it reflects the fact that the longitudinal W boson has a Higgs-sector coupling,
rather than a gauge-sector coupling, to the top quark.

This argument makes a quite specific prediction for the polarization of W bosons
in top quark decays. This polarization can be measured. In lecture 4, I explained
that it is straightforward to collect a sample of pp — tf events in which the top quark
decays are fully reconstructed. If we then boost the W bosons to their rest frames,
the distribution of the polar decay angle 8 indicates the polarization state in the way
that we analyzed in lecture 1. The polar angle is most readily determined by studying
the leptonic W decay in a final state
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The above analysis implies that the W bosons appear only in the 0 and L polar-
ization states, with
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From the angular distributions given in lecture 1, we expect that the 6 distribution
of the W boson in top decay has the form
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The measurements from the CDF experiment at the Tevatron and the ATLAS ex-
peiment at the LHC are shown in Figures 1 and 2. The prediction works very well.

Another possibility for the behavior of the longitudinal polarization state of the W
is illustrated by the process ete™ — Wi Wy . I pointed out earlier that the diagrams
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contain an extra, enhancing, factor of s/2m#,. Let us now analyze this process more
carefully.

Consider first the production from egpef. For longitudinally polarized Ws, the

diagrams with virtual v and Z taken the form
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which is just the amplitude for the production of ¢$*¢~ in an unbroken U(1) gauge
theory.
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For e7, the analysis is a little more complicated. In the same approximation as
above, the v and Z diagrams give
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so that the cancellation of the leading terms for large s is not complete. Hagver, for
ez, there is one more diagram
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we can simplify
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Again we find a complete cancellation of these terms. With a little more work, using
a more complete expression for the polarization vectors, it is possible to show that
the amplitude for efef, — Wy W indeed becomes equal to the sum of diagrams
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at high energy.

The cancellation I have shown here is a very delicate one that sensitively tests
the W couplings predicted by the Standard Model. It is interesting to compare this
prediction to the value of the W pair production total cross section measured at
LEP. The result is shown in Figure 3; there is excellent agreement. In the figure, the
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red curve is the prediction for the v and v diagrams only, and the blue curve is the
prediction for the v diagram only. These alternative predcitions have a completely
different dependence on the center of mass energy and are completely excluded even
at LEP energies.

In the next lecture, we will discuss the production mechanisms for Higgs bosons
at the LHC. Among these is the WW fusion process,

In this process, two W bosons are radiated almost collinearly from initial quarks,
and these annihilate to produce a W boson. More generally, we can use the collinear
radiation of W bosons from the initial beams to produced other types of new particles.
It would be especially-nice if we could produce longitudinally polarized W bosons.
But the GBET, these would act as particles in the Higgs sector and would access
heavy particles by Higgs sector couplings rather than by gauge sector couplings. But,
the initial quarks in the proton are light quarks, with very little coupling to the Higgs
sector. Is it possible that could produce longitudinally polarized Ws?

To analyze this question, I will compute the splitting functions for massless quarks
to radiate W bosons of the various possible polarizations. It is straightforward to do
this using the methods of lecture 3.

Set up the kinematics as we did before for radiation from the initial state. The
W boson is off-shell, so the three vectors are
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The denominator of the W boson propagator is
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The matrix element for the emission process is
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For massless quarks, only the initial and final quarks must be left-handed. The
polarization spinors are
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The polarization vectors for the emitted W bosons are
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The calculation of the matrix element for the left- and right-handed W polarization

states goes through just as before, and we find
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For the longitudinal W polarization, we find
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In all, the matrix elements are
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Now consider a process with W emission from an initial state v quark. The full
process is uX — dY, Y
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The cross section for this process is
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Replacing, as we did before,
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With the matrix elements for the transverse W polarizations, this reads
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Similarly, using the matrix element for emission of a longitudinally polarized W, the
cross section becomes
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If we interpret this equation as a W parton distribution convolved with a hard
cross section,
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we find the W pdfs for the three polarization states
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For the transverse polarization states, the integral over pr is logarithmic as belore
and the pdf again takes the form
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For the longitudinal polarization state, note that the integral is finite, with a charac-
teristic pr of order my,. Performing the integral, we find
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Although the emission rate is not logarithmically enhanced, it can be substantial.

Thus, at least to a certain extent, hadron colliders do naturally provide initial
states with the couplings to new particles characteristic of Higgs boson. This will be
an important tool in the search for new physics at the LHC.
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