ICTP Lectures
on Supersymmetry

Topics

e The hierarchy problem

e The supersymmetry algebra

e Superspace

e The minimal supersymmetric standard model (MSSM)
e Soft supersymmetry breaking

e Experimental searches for supersymmetry

The Hierarchy Problem
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Effective Field Theory

Effective theory = approximate description of physics valid
in a limited dynamical range.

Example: the Navier-Stokes equations describe fluids on
length scales large compared to atomic distances

Is the Standard Model an effective field theory? If so, at what
scale does it break down?




Until very recently, the theoretical description of weak inter-
actions required new physics at the TeV scale:

1930s: Fermi theory
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= breaks down
for E> Gy /% ~Tev

1980s: W, Z bosons, no Higgs

Wi We w, W, ngz )
+ ~ = ~GfE
m
W, we wp Wi w
2012: Standard Model with Higgs

Can be consistently extrapolated all the way to the Planck

scale. No guarantee of new physics!
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The Standard Model many important phenomena unex-
plained = new physics beyond the Standard Model.

Experimental facts:

e Neutrino masses
e Dark matter
e Cosmological density perturbations

e Baryogenesis
Theoretically motivated:
e Grand unification
¢ Origin of fermion masses and mixing
e Naturalness of the electroweak scale

Only naturalness requires new physics at the TeV scale.
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Consider a coupling constant A with mass dimenson n

[Al=n A=M" M = mass scale

Treat A as a perturbation:

M n
AE)~Ag(BE)|1+ | =] +--- E = physical energy scale
~—— E
=0(\° T
A _ o)
n > 0: perturbation theory breaks down at small E
relevant coupling
n < 0: perturbation theory breaks down at large E
irrelevant coupling
n = 0: perturbation theory good at all E*

marginal coupling * In E dependence at loop level

There are an infinite number of irrelevant couplings:

[p]=[Ad=1 [y]=3
1
M6e

AL=—— ()20 + -

Assume M > TeV = effects of irrelevant operators sup-
pressed at low energies.

This naturally occurs if these operators are generated by in-
tegrating out new physics (particles) with mass scale M >
TeV.

Effective theory at low energies parameterized by a finite
number of marginal and relevant couplings. [K. Wilson]
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The Standard Model is the most general effective Lagrangian N g
containing all relevant and marginal couplings of the ex-
perimentally observed elementary particles compatible with
Lorentz symmetry and gauge invariance.
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First Particle Data Group wallet card (1958)
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This effective field theory has an amazing amount of predic- The Standard Model contains one relevant coupling:
tive power, and agrees with all experiments performed to
date. Lsm=—mZHTH +--- m2 <0
e Weak decays m?2 = —-2m? = physical Higgs mass

* Quark mixing, CP violation Dimensional analysis suggests that m2 ~ M2 > TeV.

e No flavor-changing neutral currents " = ¢ o e Is this a problem?

e Baryon and lepton number symmetry

Is the standard model the perfect effective field theory?




X = any particle with mass My > TeV

finite large correction
to Higgs mass

Expect new physics at scales M > TeV:
My, ~ 10 GeV
Mgut ~ 106 GeV
Mp ~ 101 GeV

m? ~ —(88 GeV)? requires large unexplained cancellation
“hierarchy problem”

Possible explanations:

e Am?, forbidden by symmetry

e Higgs compositeness

e Quantum gravity at TeV scale
(large extra dimensions)

e Antrhopic selection

e Relaxation models

Graham, Kaplan, Rajendran arXiv:1504.07551 uﬁm
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Small fermion masses are natural because there is an addi-
tional chiral symmetry as my — 0:
X
2

. = Amy ~ m
v v YT 1em Y

< my
But scalar mass term HH is invariant under all symmetries
... except SUSY!
H «— H = Higgsino
= fermion partner of the Higgs
SUSY = mpy =my
Chiral symmetry = my; =0

= mf, insensitive to UV scales
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Bose-Fermi symmetry not observed in nature = SUSY broken
Nontrivial cancelations among diagrams:

------------ Am? —3—)/? [-A2+6mZInA+---]
H H H_8T[2 t

3y?
8n?
quadratic sensitivity to UV
t = stop scales cancels
= scalar partner of the top

2 35’? 2 2
Am :—ﬁxG(mf —mt)ln/\+---

----- RN AmZ = —L [N —6m2InA+--- ]

H

m; < TeV = mild logarithmic sensitivity to UV scales.
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Bose-Fermi Symmetry
in Quantum Mechanics

/i

The Supersymmetric Simple Harmonic Oscillator

The career of a young theoretical physicist consists of treat-
ing the harmonic oscillator in ever-increasing levels of ab-

straction. Sidney Coleman

Simplest example of supersymmetry in quantum mechanics:
Define in terms of creation/annihilation operators:

[Hb = ﬁwbbTb} (subtract 0-point energy)

b is for “boson”

5105111

States:
b|0) =0 [ln) =

1

m(bf)nm)] = (nlm) =épm

(Holn) = n(hwp)in) )

18

Fermionic simple harmonic oscillator:

Hy = huwf'f H} = Hy

f is for “fermion”
U fr=1 11 =0
{A, B} = AB + BA = anticommutator
States:

(f1)?]0) =0 = 2-state system
(Pauli exclusion principle)

(Hsln) = n(hwpin] - n=0,1

Combine bosonic and fermionic oscillators:

H = Hp + Hy

[b,f1=[b,f11=[b"f1=1[b"f1=0

b|0) =f]0) =0
In, 0) =L(bT)”I0) [In 1) =f"n 0)]

np = # of bosons=0,1, 2,...
Label states: |np, nf) ,
ng = # of fermions =0, 1

For wp = wy, this system has Bose-Fermi symmetry
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Spectrum of energy levels:

(HInb. n) = (b + n)(R)lne, np) |+ w0 = wp = wy

M E
3w—— 13,0), [2,1)
2w— [2,0), |11,1)
w — [1,0), 10,1)
0 — |0, 0) = ground state
=|0)

Degeneracies are the sign of a symmetry...
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Generator of symmetry:
(0=b'7+1'b)

Qlnp, nf) =|np—=1,ng+ 1)+ |np+1,nf—1)
[Q,H]=0 (definition of symmetry in QM)

[OZ =ptp +f‘rf]
= (hw)™'H

Q is “square root” of H
Implies that zero point energy cancels due to symmetry:

Q|0)=0 (ground state is invariant)
= H|0)=0
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Note: free field field theory = one harmonic oscillator for

each p.

Example:
£=U(iy"a, — m¥ + 304 pi0udi — 3> i
Y = Dirac fermion
¢; =real scalar i=1,...,4

Note: same mass for fermion, boson.

Gives a spectrum with Bose-Fermi degeneracy: for each
p there are 4 fermionic and 4 bosonic states with energy

In fact, this theory has non-minimal (N = 2) supersymme-
try. To get theory with minimal supersymmetry need mini-

mal fermion: Weyl spinor.
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Weyl Fermions
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Note on conventions:
Nuv =diag(+1,-1,-1,-1)

Spinor index notation is that of Dreiner, Haber, Martin,
Phys. Rep. 464 (2010) (arXiv:0812.1594.) This should be
consulted for additional details and results.

These conventions are used by a majority of researchers in
SUSY phenomenology.

Conventions should be conventional.
—Markus Luty
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Weyl fermions are the minimal spin % field in 4D. They are
the basic building blocks for all theories of fermions.

Start with Dirac representation:

{y¥, vV} =2n"

1

= FHV = Z[y“, YY1 =S0(3, 1) generators
Defines Dirac spinor representation: under infinitesmal
Lorentz transformations

/\uv = 5”1/ + (A)'UV
Y = Dirac spinor

L

Dirac representation is universal: exists for all spacetime di-
mensions, any metric signature.
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Finite transformations:
Yo e 79T y P =Wy P etowm
N—_———
= S(N) = [S(M17
Index notation:
Wa s 59, b e A it
a,b=1,...,4 = Dirac spinor index
Dirac matrices have index structure (y*)%

(YM)% is an invariant tensor: it is invariant when trans-
formed according to its index structure.

Spacetime metric is the canonical example of this:

nHY = /\“p/\vanp"
\_V_/
Lorentz transformation of n*V
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For yH:
(") = A*,S% () e (S 1),

Lorentz transformation of (y*)%,

Y=, SyYsTE

= can form Lorentz tensors by contracting spinor indices:
@awa ma('Y“)abLI"b
1
()% = Eeuvpo(y“yvypya)ab = invariant tensor

= additional Lorentz tensors:

Wa(y2)9pWh Wy (yHyP)apwP
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Weyl basis for Dirac matrices:
0 ot
T
Y (OIJ 0 )
o =(1,0)
ot =(1,-9)

otV 0

= block diagonal

0 = Pauli matrices
Note: o* # (o")t or (o¥)*

= Dirac representation is reducible

i _
oV = Z(o“av —ovad")

_ i _ _
oV = —(o"o0v -3"oM)
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v (l/JL) ¢ = left-handed Weyl spinor

Yr Yr = right-handed Weyl spinor

[
oYL = —EwuquV‘pL

i different reps of SO(3, 1)
OYr = —Ewuvauv‘//R

Index notation:

(W)a a=1,2,=Weyl spinor index

(Yr)® & =1, 2, = dotted Weyl spinor index
i

S(YL)a = —Ewuv(auv)aﬁ(‘//L)ﬁ

87 = =2 () 5 (0r)
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Finite transformations:

(W) — (e729w9™) By

~~

= Scxﬁ(/\)

Wa) = (e 590 )% syp)f

= 55N

Define transformation for general tensors with upper/lower
dotted/undotted Weyl spinor indices:

Tg ...... f. . — Sy,ylgﬁﬁl(s_l)a/a(g—l)é'/s ...Tal..../...
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Invariant tensors:

o YAV (e 16,

Lorentz transformation of Ugg

% = Ny (55T (S

Also:

[eaﬁ =€ =—cap=—egp = (—01 é) ]

—_—

Lorentz transformation of €4

EdB = §ay§ﬁ5€75 etc.
32




Summarize: invariant tensors

u =HaB
UO{B o)
eaB eor,B edﬁ EGB

can be used to form invariants by contracting indices.

Proof of invariance identities follows from identities on 2 x 2
matrices. For example, invariance of €qg:

? i , l ,
0=20d€qp = —Ewuv(auu)aa €a'g — Ewuv(ouu)ﬁﬁ €ap’

_ T
< 0=0*e +o0"Ve (0 1
-1 0

o eolVel = —gHv

Follows from eote’ = (a")* Exercise: check this.
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Complex conjugation relates dotted/undotted spinor indices:
[[(aw)aﬁ] * = (6“”)%]
= makes sense to write

W) =4, etc.

Any spinor Lagrangian can be written entirely in terms of L
Weyl spinors.

Given ¢4, can define Weyl spinors with any index structure:

Yo =ePyg
‘/":; = ((//or)Jr
wTO( _ eo{ﬁw;
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Invariant Lagrangians (finally!)

Most general quadratic Lagrangian for a Weyl spinor ¢4:

[L = yLic"Poupp — 3 (e%Pyayp + h.c.)]

The mass term is a Majorana mass term.
Note that it breaks any U(1) symmetry acting on ¢.

Nonzero mass term requires anticommuting spinor fields:
‘/jawﬁ = _wﬁwa

Canonical quantization: quantum fermion fields obey an-
ticommutation relations, h — 0 limit gives anticommuting
classical spinor fields.

eaﬁ — _eﬁa

Path integral quantization: fermion path integral is over an-

ticommuting fields.
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Check £ = £ (needed for Hermitian quantum Hamiltonian)

To agree with Hermitian conjugation of operators, complex
conjugation of classical anticommuting spinors must be de-
fined to reverse the order of spinors:

Waxp)' = x40
With this rule, we have
(€Pyayp)t = ePylyl = —ePyly]

(wgialorﬁauwﬁ)’r — _iauw;; (aﬂﬁor)* g
N—— ’—/' _ _
— a_uﬁa (OH)T — OIJ

(no change of sign)

= +¢Ei5uﬁaau¢a (integrate by parts)
= LT =L,

36




Expressions look cleaner when spinor indices are implicit:
V50" s =yTaty
XGGI;BXTB = xotxt
In general, omit summed indices
a,and 9
Example:

XU =X"0a=€¥xpla = —€PPaxs
~———

= wﬁXﬁ = —G'B(Xl‘[la — _wﬁ
=+Px
pr=eyp Yo = €ap? etc.
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Exercise:

Consider theory of a single massless Weyl fermion ¢4 with
the Lagrangian given above.

(a) Show that the equation of motion is the Weyl equation
i6H%B3,45 =0

Multiply on the left by Y9, to show that the Weyl equation
implies the massless Klein-Gordon equation:

Dlp(x=0

(b) Consider the most general plane wave solution
Ya(X) = wa(p)e™P

By going to the frame p# = (E, 0, 0, E), show that there is a
unique solution for wq(p).
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(c) The most general operator solution to the Weyl equation
is

0 s
R d3p L —P = 1Bl

X) = a(p)yw e X
a0 f TELTETEE [a(P)wa(p) |

+ b (Pywa(p)e*?]

Imposing the anticommutation relations

{a(p), a"(p")} = {b(p), b'(F")} = 8>(B - F")

{a(p), a(p")} = {b(p), b(F")} = {a(p), b'(p")} =0
compute the equal-time anticommutator

{da(t, %), §i(t, 9)}
You will need the identity
Wa(p)w;;(p) = UZBpu (fixes normalization of uq(p))

which you can verify in the standard frame.
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(d) Show that the canonical momentum is

(Remember that ¢4 is a classical anticommuting field.)

(e) Show that the anticommutation relation you derived
above is equivalent to the canonical anticommutation rela-
tion

{7, ), dp(t, )} = —i6%66>(X ~ 7)

This exercise shows that a Weyl fermion has 2 propagating
degrees of freedom.

Note: many textbook treatments of the Dirac equation
change the sign of m¥ and the canonical anticommutation
relations to get the correct commutation relations for the

creation and annihilation operators.
40




Simplest theory with a chance of Bose-Fermi symmetry:
Yo = L Weyl fermion

¢ = complex scalar (2 degrees of freedom)

£= Wtaua“w * a”¢*au¢ m = 0 for now
Note this preserves U(1) symmetry

Yo — e, ¢ — el
Write most general SUSY transformation:

°op~y, 6~

e Lorentz/spinor indices match

e U(1) invariant
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5 - — H u ”

¢= 8¢ E9 = spinor “parameter
= ‘Sa‘pa

Note: ETyT would violate U(1).

[¢1=1 Wl=3 =

Yo =Co&adp +C1 (OMET)G o+ 250 + -+ -
W—/ .
=0ZBETB
[col=1 [c1]=0 [c2]=-1

Require no new dimensionful parameters = ¢; term only.
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Compute 6.L:
s(a4pTa,p) = aHpTa,(6¢) + h.c.
=oHpTEa, ¥ + h.c.
depends on ET
s(ytiota ) = sytiota,y + h.c.
=ic*a,¢'Ec G avy + h.c.

= —ic*3,0,¢TE0HT Y + h.c.
Use identity udve's v

oHoY + ovo" =2nHv1,
= &(yticta yp = —ic*O¢pTEY + h.c.
=ic*oH¢'Ea P + h.c.

= 6L =0 forc=-i.
44




Summarize: [ op=CEy oY = —iU’“’E,Tau(P J

Noether current:

(14 = (070" )advo' |

Note: carries extra spacetime (spinor) index = sign of space-
time symmetry

Check conservation:

au]g, = (oY 5“)0,'88“([//3 avpr + (Uvau)orﬁ‘.Uﬁauav‘l;r

Noether charge:

-
Qa = \/EJdE’ng ] (normalization is conventional)
.

d |
an =0 (on classical solutions)
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~—_——
= 0 — n“véaﬁ
= ou)f =0 (on classical solutions)
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Quantum theory:
Pa(x) = f o [a(P)wa(p)e=P™
(2m)3/2(2|p))Y/2
+ b (B)wal(p)e* ]
Note: 2 degrees of freedom in quantum Weyl fermion.
. d3p ) . -
X) = é(ple~P> 4+ df(p)etPx
$(x) f EEPTIE [B) (B)e*P™ |

~

- [éa =2 J PP ua(P) | (PP + ' (P)A(P)

J

0L = V2 | pul) & @)eep) + &' 5(P)|
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fermion particle: |¢(B)) = a'(p)|0)
fermion antiparticle: [¢(B)) = b'(3)|0)
scalar particle: |¢(p)) = ¢'(8)|0)
scalar antiparticle: |¢(p)) = d"(5)|0)

OalP(P)) =0
0ald(P)) = V2ua(B)P(B))

Oal¥(P)) = V2ua(B)9(B))
Oal(P)) =0
OB = V2ul(P)Io(B))
OLlg(p)) =0

QLlu(@) =0
OLle(d) = V2ul(BIv@)

) - — i
Summarize: ll/—Q—>¢—Q—>¢ ¢’—O—’¢—O—’¢’
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Use the free-field representation to compute
{0, Q}}=2 fd3p d>q ua(P)uj,(@)
x [{el(Brap), a"(@e@}
+{bY(@)d(@), d"(Db@)}]

a, b =fermion
¢, d = boson

{0, 0}} =2 | Pp ua(Puj(B) 4" (BYA(P) + - + A" (P)A(P)
| S ——
&
= aaBp”
= 205/?’3“ P, = 4-momentum operator
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(€0, 01y =204, ]

Q ~ square root of spacetime translations = SUSY is a space-
time symmetry.

Similarly,

[{Oa, Qp}r=0

(6}, 041 =0 |

(181 Ga1=0 (b G41=0

This is the famous (N = 1) SUSY algebra.

Drop the hats from now on...
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Consequences of SUSY Algebra:

General state can be expanded in eigenstates of PH with
eigenvalue pH = timelike.

Choose frame p# =(E, 0,0,0) =
t Tt _ 2 _ ... (012 —
H=3(Q, +0})* = 3(Q, + Q})?
= square of Hermitian operator

= [(tIJIHIlIJ) >0 ] i.e. states have positive energy.

Vacuum state is invariant: O4|0) =0, OLIO) =0

= | HI0)=0 (unbroken SUSY)

Vacuum energy vanishes = a clue to cosmological constant
problem? 52




Massless 1-particle states:
1B, A) A =p-5 = helicity
Choose frame p# = (E, 0,0, E) E>0
{Q,, QJ{} =0
{Q,, QE} =4E

This is the algebra of one fermionic creation and annihilation
operator Qb, Q, [Q], Q, act trivially].

[(?CXIIIj 'g] = [OCYI Mlz] = —(Ulz)aﬁQB
[02,6-51=+30;  [Q},p-51=-308

= Q> (OE) acts as raising (lowering) operator for helicity.
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Irreducible 1-particle representations:
1B, A) - 1B, —A)
B, A+ 3) - B, A - 3)

|B,0) CPT|P,0) « complex scalar
A=0: 1 .
5,3) 1B —3) — Weyl fermion

This is the chiral multiplet.
L1 .

Ny B,%)  1B.-3) < Weyl fermion
’ |5, 1) 1B, —1) «— massless gauge field

This is the massless vector multiplet.

These are the multiplets that describe massless particles of

in <
spin < 1. .




