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Topics
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The Hierarchy Problem
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Effective Field Theory

Example: the Navier-Stokes equations describe fluids on
length scales large compared to atomic distances

Effective theory = approximate description of physics valid
in a limited dynamical range.

Is the Standard Model an effective field theory? If so, at what
scale does it break down?
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1930s: Fermi theory

2012: Standard Model with Higgs

Until very recently, the theoretical description of weak inter-
actions required new physics at the TeV scale:
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Consider a coupling constant � with mass dimenson n

[�] = n � = Mn M =mass scale

Treat � as a perturbation:

= O(�0)
= O(�1)

E = physical energy scaleA(E) ⇠ A0(E)| {z }

ñ
1+
Ç
M

E

ån

| {z }
+ · · ·
ô

n > 0: perturbation theory breaks down at small E

n < 0: perturbation theory breaks down at large E

relevant coupling

irrelevant coupling

marginal coupling
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There are an infinite number of irrelevant couplings:

[�] = [A�] = 1, [�] = 3
2

�L =
1

M64
(�̄�)12É9�14 + · · ·

Assume M � TeV ) effects of irrelevant operators sup-
pressed at low energies.

This naturally occurs if these operators are generated by in-
tegrating out new physics (particles) with mass scale M �
TeV.

Effective theory at low energies parameterized by a finite
number of marginal and relevant couplings. [K. Wilson]
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The Standard Model is the most general effective Lagrangian
containing all relevant and marginal couplings of the ex-
perimentally observed elementary particles compatible with
Lorentz symmetry and gauge invariance| {z }.
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First Particle Data Group wallet card (1958)
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This effective field theory has an amazing amount of predic-
tive power, and agrees with all experiments performed to
date.

• Quark mixing, CP violation

• Weak decays

• Baryon and lepton number symmetry

12. CKM quark-mixing matrix 15
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Figure 12.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL.

and the Jarlskog invariant is J = (3.06+0.21
−0.20) × 10−5.

Figure 12.2 illustrates the constraints on the ρ̄, η̄ plane from various measurements
and the global fit result. The shaded 95% CL regions all overlap consistently around the
global fit region.

12.5. Implications beyond the SM

The effects in B, Bs, K, and D decays and mixings due to high-scale physics
(W , Z, t, H in the SM, and unknown heavier particles) can be parameterized by
operators composed of SM fields, obeying the SU(3) × SU(2) × U(1) gauge symmetry.
Flavor-changing neutral currents, suppressed in the SM, are especially sensitive to beyond
SM (BSM) contributions. Processes studied in great detail, both experimentally and
theoretically, include neutral meson mixings, B(s) → Xγ, Xℓ+ℓ−, ℓ+ℓ−, K → πνν̄,
etc. The BSM contributions to these operators are suppressed by powers of the scale
of new physics. Already at lowest order, there are many dimension-6 operators, and
the observable effects of BSM interactions are encoded in their coefficients. In the SM,
these coefficients are determined by just the four CKM parameters, and the W , Z, and
quark masses. For example, ∆md, Γ(B → ργ), Γ(B → πℓ+ℓ−), and Γ(B → ℓ+ℓ−) are all
proportional to |VtdVtb|2 in the SM, however, they may receive unrelated contributions
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• No flavor-changing neutral currents

Is the standard model the perfect effective field theory?

11

The Standard Model contains one relevant coupling:

LSM = �m2
HH

†H+ · · · m2
H < 0

Dimensional analysis suggests that m2
H ⇠ M2 � TeV.

m2
h = �2m

2
H = physical Higgs mass
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X = any particle with mass MX � TeV

) �m2
H ⇠

y2

16�2
M2
X

| {z }
finite large correction

to Higgs mass

X
H H

m2
H ' �(88 GeV)2 requires large unexplained cancellation

“hierarchy problem”

Expect new physics at scales M� TeV:

M�R ⇠ 1014 GeV

MGUT ⇠ 1016 GeV
MPl ⇠ 1019 GeV
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• �m2
H forbidden by symmetry

• Relaxation models
Graham, Kaplan, Rajendran arXiv:1504.07551

...
?
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�

X

�

But scalar mass term H†H is invariant under all symmetries

. . . except SUSY!

) �m� ⇠
y2

16�2
m�
| {z }
<⇠m�

= fermion partner of the Higgs

SUSY ) mH =mH̃

Chiral symmetry ) mH̃ = 0

) m2
H insensitive to UV scales

H$ H̃ = Higgsino
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H

Nontrivial cancelations among diagrams:

H H

t

H

t̃

t̃ = stop

= scalar partner of the top

quadratic sensitivity to UV
scales cancels

Bose-Fermi symmetry not observed in nature) SUSY broken

mt̃ <⇠ TeV ) mild logarithmic sensitivity to UV scales.
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Bose-Fermi Symmetry
in Quantum Mechanics
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The Supersymmetric Simple Harmonic Oscillator

— Sidney Coleman

[b, b†] = 1 [b, b] = [b†, b†] = 1

Define in terms of creation/annihilation operators:

States:

b|0i = 0 |ni =
1
p
n!
(b†)n|0i ) hn|mi = �nm

The career of a young theoretical physicist consists of treat-
ing the harmonic oscillator in ever-increasing levels of ab-
straction.

Hb = ��bb†b (subtract 0-point energy)

Hb|ni = n(��b)|ni

b is for “boson”
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Fermionic simple harmonic oscillator:

ƒ is for “fermion”

{ƒ , ƒ †} = 1 {ƒ , ƒ} = {ƒ †, ƒ †} = 0

{A,B} = AB+ BA = anticommutator

H†
ƒ = Hƒ

States:

ƒ |0i = 0 |1i = ƒ †|0i

(ƒ †)2|0i = 0 ) 2-state system
(Pauli exclusion principle)

Hƒ = ��ƒ ƒ †ƒ

Hƒ |ni = n(��ƒ )|ni n = 0,1
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H = Hb +Hƒ

[b, ƒ] = [b, ƒ †] = [b†, ƒ] = [b†, ƒ †] = 0

b|0i = ƒ |0i = 0

|n,0i =
1
p
n!
(b†)n|0i |n,1i = ƒ †|n,0i

Label states: |nb, nƒ i
nb = # of bosons = 0,1,2, . . .
nƒ = # of fermions = 0,1

Combine bosonic and fermionic oscillators:

For �b = �ƒ , this system has Bose-Fermi symmetry
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|0,0i = ground state
= |0i

|1,0i, |0,1i
|2,0i, |1,1i

|3,0i, |2,1i

E

0

�

2�

3�

...

� = �b = �ƒ

Spectrum of energy levels:

H|nb, nƒ i = (nb + nƒ )(��)|nb, nƒ i
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(definition of symmetry in QM)[Q,H] = 0

Q is “square root” of H

Q2 = b†b+ ƒ †ƒ

= (��)�1H

Generator of symmetry:

Q|nb, nƒ i = |nb � 1, nƒ + 1i+ |nb + 1, nƒ � 1i

Q = b†ƒ + ƒ †b
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L = �(����� �m)�+ 1
2�

������� � 1
2m

2����

�� = real scalar

� = Dirac fermion

� = 1, . . . ,4

In fact, this theory has non-minimal (N = 2) supersymme-
try. To get theory with minimal supersymmetry need mini-
mal fermion: Weyl spinor.

Gives a spectrum with Bose-Fermi degeneracy: for each
~p there are 4 fermionic and 4 bosonic states with energyp
~p2 +m2.

Note: same mass for fermion, boson.
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Weyl Fermions
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Note on conventions:

��� = diag(+1,�1,�1,�1)

These conventions are used by a majority of researchers in
SUSY phenomenology.

Conventions should be conventional.

—Markus Luty
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Weyl fermions are the minimal spin 1
2 field in 4D. They are

the basic building blocks for all theories of fermions.

{��,��} = 2���

) ��� =
�

4
[��,��] = SO(3,1) generators

�� = �
�

2
�������

��� = ��� +��
�

� = Dirac spinor

Defines Dirac spinor representation: under infinitesmal
Lorentz transformations
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�� =
Ç
0 ��

�� 0

å

~� = Pauli matrices

Weyl basis for Dirac matrices:

) ��� =
Ç
��� 0
0 ���

å

�� = (1, ~�)

�� = (1,�~�)

��� =
�

4
(���� � ����)

��� =
�

4
(���� � ����)

Note: �� 6= (��)† or (��)�
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� =
Ç
�L
�R

å
�L = left-handed Weyl spinor

�R = right-handed Weyl spinor

��L = �
�

2
�������L

��R = �
�

2
����

���R
different reps of SO(3,1)

|
{z
}
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Also:
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Expressions look cleaner when spinor indices are implicit:

�†�̇�
��̇��� = �†���

����
��̇
�†�̇ = ����†

In general, omit summed indices
�
� �̇

�̇and

�� = ���� = �������

Example:

= ������| {z }��

= ������ = ���= ����

= +��

�� = ����� �� = ����� etc.
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��̄��̇����� = 0

É�� = 0

Exercise:

Consider theory of a single massless Weyl fermion �� with
the Lagrangian given above.

(b) Consider the most general plane wave solution

(a) Show that the equation of motion is the Weyl equation

Multiply on the left by ���� to show that the Weyl equation
implies the massless Klein-Gordon equation:
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Imposing the anticommutation relations

{�̂( ~p), �̂( ~p0)} = {b̂( ~p), b̂( ~p0)} = {�̂( ~p), b̂†( ~p0)} = 0

{�̂( ~p), �̂†( ~p0)} = {b̂( ~p), b̂†( ~p0)} = �3( ~p� ~p0)

compute the equal-time anticommutator

{�̂�(t, ~�), �̂
†
�̇
(t, ~y)}

(c) The most general operator solution to the Weyl equation
is

You will need the identity

(fixes normalization of ��(p))

which you can verify in the standard frame.

p0 = | ~p|
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�� =
�L

��̇�
= ���†

�̇
��0�̇�

{�̂�(t, ~�), �̂�(t, ~y)} = ������3(~�� ~y)

This exercise shows that a Weyl fermion has 2 propagating
degrees of freedom.

(d) Show that the canonical momentum is

(Remember that �� is a classical anticommuting field.)

(e) Show that the anticommutation relation you derived
above is equivalent to the canonical anticommutation rela-
tion
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Supersymmetry in
Free Quantum Field Theory
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Simplest theory with a chance of Bose-Fermi symmetry:

�� = L Weyl fermion

� = complex scalar (2 degrees of freedom)

m = 0 for now
Note this preserves U(1) symmetry

�� 7! e���, � 7! e���

• Lorentz/spinor indices match

• U(1) invariant

Write most general SUSY transformation:

L = �†������+ ���†���
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�� = spinor “parameter”

[�] = 1, [�] = 3
2 ) [�] = �1

2

= ��
��̇
�†�̇

�� = ��|{z}
= ����
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Compute �L:

depends on �†

�(���†���) = ���†��(��) + h.c.

�(�†������) = ��†������+ h.c.

= �c����†����
����+ h.c.

= ��c������†������+ h.c.
Use identity

) �L = 0 for c = ��.

���� + ���� = 2���12

= �c����†����+ h.c.
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Noether current:

Check conservation:

�� J�� = (�
� ��)������| {z }���

†

= 0

+ (����)��| {z }�������
†

! ������| {z }
� É� = 0

) �� J�� = 0 (on classical solutions)

J�� = (�
����)����†

Summarize: �� = �� �� = �����†���
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Noether charge:

(on classical solutions)

(normalization is conventional)Q� =
p
2
Z
d3� J0�
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Quantum theory:

Q̂†
�̇ =
p
2
Z
d3p�†�̇( ~p)
h
�̂†( ~p)ĉ( ~p) + d̂†( ~p)b̂( ~p)

i
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fermion particle: |�( ~p)i = �̂†( ~p)|0i

fermion antiparticle: |�( ~p)i = b̂†( ~p)|0i

scalar particle: |�( ~p)i = ĉ†( ~p)|0i

scalar antiparticle: |�( ~p)i = d̂†( ~p)|0i

Q̂�|�( ~p)i = 0

Q̂�|�( ~p)i = 0

Q̂†
�̇|�( ~p)i = 0

Q̂†
�̇|�( ~p)i = 0

�
Q�! �

Q†

�! ��
Q†

�! �
Q�! �

Q̂�|�( ~p)i =
p
2��( ~p)|�( ~p)i

Q̂�|�( ~p)i =
p
2��( ~p)|�( ~p)i

Q̂†
�̇|�( ~p)i =
p
2�†�̇( ~p)|�( ~p)i

48



The Supersymmetry
Algebra
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+
�
b̂†(~q)d̂(~q), d̂†(~q)b̂(~q)

 i

�, b = fermion
c, d = boson

{ĉ†�̂, �̂†ĉ} = {�̂, �̂†}ĉ†ĉ+ [ĉ, ĉ†]�̂†�̂

{b̂†d̂, d̂†b̂} = {b̂, b̂†}d̂†d̂+ [d̂, d̂†]b̂†b̂

= ��
��̇
p�

P̂� = 4-momentum operator= 2��
��̇
P̂�

{Q̂�, Q̂
†
�̇
} = 2
Z
d3pd3q��( ~p)�

†
�̇
(~q)

{Q̂�, Q̂
†
�̇
} = 2
Z
d3p ��( ~p)�

†
�̇
( ~p)

| {z }

h
�̂†( ~p)�̂( ~p) + · · ·+ d̂†( ~p)d̂( ~p)

i
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{Q̂�, Q̂�} = 0 {Q̂†
�̇, Q̂

†
�̇
} = 0

This is the famous (N = 1) SUSY algebra.

{Q̂�, Q̂
†
�̇
} = 2��

��̇
P̂�
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