ICTP Lectures on Supersymmetry

Topics

- The hierarchy problem
- The supersymmetry algebra
- Superspace
- The minimal supersymmetric standard model (MSSM)
- Soft supersymmetry breaking
- Experimental searches for supersymmetry

The Hierarchy Problem 3

Effective Field Theory

Effective theory $=$ approximate description of physics valid in a limited dynamical range.

2

Example: the Navier-Stokes equations describe fluids on length scales large compared to atomic distances

Is the Standard Model an effective field theory? If so, at what scale does it break down?

4

Until very recently, the theoretical description of weak interactions required new physics at the TeV scale:

1930s: Fermi theory

Can be consistently extrapolated all the way to the Planck scale. No quarantee of new physics!

The Standard Model many important phenomena unexplained \Rightarrow new physics beyond the Standard Model.

Experimental facts:

- Neutrino masses
- Dark matter
- Cosmological density perturbations
- Baryogenesis

Theoretically motivated:

- Grand unification
- Origin of fermion masses and mixing
- Naturalness of the electroweak scale

Only naturalness requires new physics at the TeV scale. 5

Consider a coupling constant λ with mass dimenson n

$$
[\lambda] = n \qquad \lambda = M^n \qquad M = \text{mass scale}
$$

Treat λ as a perturbation:

$$
\mathcal{A}(E) \sim \underbrace{\mathcal{A}_0(E)}_{= O(\lambda^0)} \left[1 + \underbrace{\left(\frac{M}{E}\right)^n}_{= O(\lambda^1)} + \cdots \right] \quad E = \text{physical energy scale}
$$

- *n >* 0: perturbation theory breaks down at small *E relevant coupling*
- *n <* 0: perturbation theory breaks down at large *E irrelevant coupling*
- $n = 0$: perturbation theory good at all E^* *marginal coupling* * In E dependence at loop level 7

There are an infinite number of irrelevant couplings:

$$
[\phi] = [A_{\mu}] = 1, \qquad [\psi] = \frac{3}{2}
$$

$$
\Delta \mathcal{L} = \frac{1}{M^{64}} (\bar{\psi}\psi)^{12} \Box^{9} \phi^{14} + \cdots
$$

Assume $M \gg TeV \Rightarrow$ effects of irrelevant operators suppressed at low energies.

This naturally occurs if these operators are generated by integrating out new physics (particles) with mass scale *M* TeV.

Effective theory at low energies parameterized by a finite number of marginal and relevant couplings. [K. Wilson]

The Standard Model is the most general effective Lagrangian containing all relevant and marginal couplings of the experimentally observed elementary particles compatible with Lorentz symmetry and gauge invariance .

This effective field theory has an amazing amount of predictive power, and agrees with all experiments performed to date. 12. CKM quark-mixing matrix 15 excluded at CL & **1.5** excluded area has CL > 0.95

γ

α γ β

α

ρ **-1.0 -0.5 0.0 0.5 1.0 1.5 2.0**

the observable effects of BSM interactions are encoded in their coefficients. In the SM, these coefficients are determined by just the four $\mathcal{C}_\mathcal{A}$ parameters, and the W, Z, and the W, Z, and quark masses. For example, [∆]md, ^Γ(^B [→] ργ), ^Γ(^B [→] πℓ+ℓ−), and ^Γ(^B [→] ^ℓ+ℓ−) are all ² in the SM, however, they may receive unrelated contributions

∆<mark>m_d</mark>

∆m_d & ∆m_s

 $\varepsilon_{\rm K}$

(excl. at CL > 0.95) sol. w/ cos 2β < 0

γ

Vub

α

η

-1.5 -1.0 -0.5 0.0 0.5 1.0

Kε

sin 2β

- *•* Weak decays
- *•* Quark mixing, *CP* violation
- *•* No flavor-changing neutral currents
- Baryon and lepton number symmetry **around the shaded** $\mathcal{L}_{\mathcal{A}}$

operators composed of SM fields, obeying the SU(3) × SU(2) × U(1) gauge symmetry. Is the standard model the perfect effective field theory? \qquad

Dimensional analysis suggests that $m_H^2 \sim M^2 \gg \text{TeV}$. Is this a problem?

Small fermion masses are natural because there is an additional chiral symmetry as $m_{\psi} \rightarrow 0$:

$$
\psi \xrightarrow{\chi} \psi \Rightarrow \Delta m_{\psi} \sim \frac{y^2}{\frac{16\pi^2}{\pi^2} m_{\psi}} \approx m_{\psi}
$$

But scalar mass term *H*†*H* is invariant under all symmetries *...* except SUSY!

 $H \leftrightarrow \tilde{H} =$ Higgsino

= fermion partner of the Higgs

 $SUSY \Rightarrow m_H = m_{\tilde{H}}$

Chiral symmetry $\Rightarrow m_{\tilde{H}} = 0$

 \Rightarrow m_H^2 insensitive to UV scales

15

Nontrivial cancelations among diagrams: Bose-Fermi symmetry not observed in nature ⇒ SUSY broken

$$
\lim_{H} \underbrace{\bigcup_{H}^{t} \dots \bigcup_{H}^{t}}_{H} \Delta m_{H}^{2} = \frac{3y_{t}^{2}}{8\pi^{2}} \left[-\Lambda^{2} + 6m_{t}^{2} \ln \Lambda + \cdots \right]
$$
\n
$$
\lim_{H} \Delta m_{H}^{2} = \frac{3y_{t}^{2}}{8\pi^{2}} \left[\Lambda^{2} - 6m_{\tilde{t}}^{2} \ln \Lambda + \cdots \right]
$$
\nquadratic sensitivity to UV scales
\n= scalar partner of the top
\n
$$
\Delta m_{H}^{2} = -\frac{3y_{t}^{2}}{8\pi^{2}} \times 6(m_{\tilde{t}}^{2} - m_{t}^{2}) \ln \Lambda + \cdots
$$
\n
$$
m_{\tilde{t}} \lesssim \text{TeV} \Rightarrow \text{mild logarithmic sensitivity to UV scales.}
$$

The Supersymmetric Simple Harmonic Oscillator

— Sidney Coleman *The career of a young theoretical physicist consists of treating the harmonic oscillator in ever-increasing levels of abstraction.*

Simplest example of supersymmetry in quantum mechanics: Define in terms of creation/annihilation operators:

Fermionic simple harmonic oscillator: *ƒ* is for "fermion" ${f, f} = 1$ ${f, f} = {f[†], f[†]} = 0$ ${A, B} = AB + BA =$ anticommutator $H_f^{\dagger} = H_f$ States: $[f(0) = 0]$ $[1] = f^{\dagger} |0\rangle$ $(f^{\dagger})^2|0\rangle = 0 \Rightarrow 2$ -state system (Pauli exclusion principle) $H_f = \hbar \omega_f f^{\dagger} f$ $H_f|n\rangle = n(\hbar\omega_f)|n\rangle$ $n = 0, 1$ 19 $H = H_b + H_f$ $[b, f] = [b, f^{\dagger}] = [b^{\dagger}, f] = [b^{\dagger}, f^{\dagger}] = 0$ $b|0\rangle = f|0\rangle = 0$ $|n, 0\rangle = \frac{1}{\sqrt{n!}}$ $\binom{1}{h}$, 1) = $f^{\dagger}|n, 0$ Label states: $|n_b, n_f\rangle$ $n_b = #$ of bosons = 0, 1, 2, ... $n_f = #$ of fermions = 0, 1 Combine bosonic and fermionic oscillators: For $\omega_b = \omega_f$, this system has Bose-Fermi symmetry 20

Spectrum of energy levels:

$$
(H|n_b, n_f) = (n_b + n_f)(\hbar\omega)|n_b, n_f)
$$

$$
\omega = \omega_b = \omega_f
$$

\n
$$
\vdots
$$

\n
$$
3\omega - |3, 0\rangle, |2, 1\rangle
$$

\n
$$
2\omega - |2, 0\rangle, |1, 1\rangle
$$

\n
$$
\omega - |1, 0\rangle, |0, 1\rangle
$$

\n
$$
0 - |0, 0\rangle = \text{ground state}
$$

\n
$$
= |0\rangle
$$

\nDegeneracies are the sign of a symmetry...

Generator of symmetry:

$$
Q = b^{\dagger}f + f^{\dagger}b
$$

\n
$$
Q|n_b, n_f) = |n_b - 1, n_f + 1\rangle + |n_b + 1, n_f - 1\rangle
$$

\n
$$
[Q, H] = 0
$$
 (definition of symmetry in QM)
\n
$$
Q^2 = b^{\dagger}b + f^{\dagger}f
$$

\n
$$
= (\hbar \omega)^{-1}H
$$

\nQ is "square root" of H
\nImplies that zero point energy cancels due to symmetry:
\n
$$
Q|0\rangle = 0
$$
 (ground state is invariant)
\n
$$
\Rightarrow H|0\rangle = 0
$$

Note: free field field theory = one harmonic oscillator for each \vec{p}

21

Example:

$$
\mathcal{L} = \overline{\Psi}(i\gamma^{\mu}\partial_{\mu} - m)\Psi + \frac{1}{2}\partial^{\mu}\phi_{i}\partial_{\mu}\phi_{i} - \frac{1}{2}m^{2}\phi_{i}\phi_{i}
$$

 $\Psi =$ Dirac fermion

 ϕ_i = real scalar $i = 1, \ldots, 4$

Note: same mass for fermion, boson.

Gives a spectrum with Bose-Fermi degeneracy: for each $\sqrt{\vec{p}^2 + m^2}$. \vec{p} there are 4 fermionic and 4 bosonic states with energy

In fact, this theory has non-minimal ($N = 2$) supersymmetry. To get theory with minimal supersymmetry need minimal fermion: Weyl spinor. 23

Note on conventions:

 $\eta_{\mu\nu} = \text{diag}(+1, -1, -1, -1)$

Spinor index notation is that of Dreiner, Haber, Martin, **Phys. Rep.** 464 (2010) (arXiv: 0812. 1594.) This should be consulted for additional details and results.

These conventions are used by a majority of researchers in SUSY phenomenology.

25

 -1

Conventions should be conventional.

—Markus Luty

Weyl fermions are the minimal spin $\frac{1}{2}$ field in 4D. They are the basic building blocks for all theories of fermions.

Start with Dirac representation:

$$
\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}
$$

\n
$$
\Rightarrow \Sigma^{\mu\nu} = \frac{i}{4} [\gamma^{\mu}, \gamma^{\nu}] = SO(3, 1) \text{ generators}
$$

Defines Dirac spinor representation: under infinitesmal Lorentz transformations

$$
\Lambda^{\mu}{}_{\nu} = \delta^{\mu}{}_{\nu} + \omega^{\mu}{}_{\nu}
$$

\n
$$
\delta \Psi = -\frac{i}{2} \omega_{\mu\nu} \Sigma^{\mu\nu} \Psi
$$
 $\Psi = \text{Dirac spinor}$

Dirac representation is universal: exists for all spacetime dimensions, any metric signature.

26

Finite transformations:

$$
\Psi \mapsto \underbrace{e^{-\frac{i}{2}\omega_{\mu\nu}\Sigma^{\mu\nu}}}_{\equiv S(\Lambda)} \Psi \qquad \overline{\Psi} = \Psi^{\dagger}\gamma^{0} \mapsto \overline{\Psi} \underbrace{e^{+\frac{i}{2}\omega_{\mu\nu}\Sigma^{\mu\nu}}}_{\equiv [S(\Lambda)]}
$$

Index notation:

 $\label{eq:psi} \psi^\alpha \mapsto S^\alpha{}_b \psi^b \qquad \qquad \overline{\Psi}_\alpha \mapsto \overline{\Psi}_b (S^{-1})^b{}_\alpha$

 $a, b = 1, \ldots, 4$ = Dirac spinor index

Dirac matrices have index structure $(\gamma^{\mu})^{\alpha}{}_{b}$

 $(\gamma^{\mu})^{\alpha}{}_{b}$ is an *invariant tensor*: it is invariant when transformed according to its index structure.

Spacetime metric is the canonical example of this:

$$
\eta^{\mu\nu} = \underbrace{\Lambda^{\mu}{}_{\rho}\Lambda^{\nu}{}_{\sigma}\eta^{\rho\sigma}}_{\text{Lorentz transformation of }\eta^{\mu\nu}}
$$

For
$$
\gamma^{\mu}
$$
:
\n
$$
(\gamma^{\mu})^{\alpha}{}_{b} = \underbrace{\Lambda^{\mu}{}_{\nu} S^{\alpha}{}_{c} (\gamma^{\nu})^{c}{}_{d} (S^{-1})^{\alpha}{}_{b}}_{\text{Lorentz transformation of } (\gamma^{\mu})^{\alpha}{}_{b}} \gamma^{\mu} = \Lambda^{\mu}{}_{\nu} S \gamma^{\nu} S^{-1}
$$

 \Rightarrow can form Lorentz tensors by contracting spinor indices:

 \ddotsc

$$
\overline{\Psi}_{\alpha}\Psi^{\alpha} \qquad \qquad \overline{\Psi}_{\alpha}(\gamma^{\mu})^{a}{}_{b}\Psi^{b}
$$

$$
(\gamma^5)^a{}_b=\frac{1}{4!}\epsilon_{\mu\nu\rho\sigma}(\gamma^\mu\gamma^\nu\gamma^\rho\gamma^\sigma)^a{}_b={\rm invariant\ tensor}
$$

 \Rightarrow additional Lorentz tensors:

$$
\overline{\Psi}_a(\gamma^5)^a{}_b\Psi^b \qquad \overline{\Psi}_a(\gamma^\mu\gamma^5)^a{}_b\Psi^b \qquad \cdots
$$

Weyl basis for Dirac matrices:

$$
\gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \overline{\sigma}^{\mu} & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} \sigma^{\mu} = (1, \vec{\sigma}) \\ \overline{\sigma}^{\mu} = (1, -\vec{\sigma}) \end{pmatrix}
$$
 $\vec{\sigma} = \text{Pauli matrices}$
\n
$$
\overline{\sigma}^{\mu} = (1, -\vec{\sigma})
$$
 Note: $\overline{\sigma}^{\mu} \neq (\sigma^{\mu})^{\dagger}$ or $(\sigma^{\mu})^*$
\n
$$
\Rightarrow \Sigma^{\mu\nu} = \begin{pmatrix} \sigma^{\mu\nu} & 0 \\ 0 & \overline{\sigma}^{\mu\nu} \end{pmatrix}
$$

\n= block diagonal
\n
$$
\overline{\sigma}^{\mu\nu} = \frac{i}{4} (\sigma^{\mu} \overline{\sigma}^{\nu} - \sigma^{\nu} \overline{\sigma}^{\mu})
$$

\n
$$
\overline{\sigma}^{\mu\nu} = \frac{i}{4} (\overline{\sigma}^{\mu} \sigma^{\nu} - \overline{\sigma}^{\nu} \sigma^{\mu})
$$

Finite transformations:
\n
$$
(\psi_L)_{\alpha} \rightarrow \underbrace{\left(e^{-\frac{i}{2}\omega_{\mu\nu}\sigma^{\mu\nu}}\right)_{\alpha}}_{=\mathcal{S}_{\alpha}{}^{\beta}(\Lambda)}
$$
\n
$$
(\psi_R)^{\dot{\alpha}} \rightarrow \underbrace{\left(e^{-\frac{i}{2}\omega_{\mu\nu}\overline{\sigma}^{\mu\nu}}\right)^{\dot{\alpha}}_{\beta}(\psi_R)^{\dot{\beta}}}_{=\overline{S}^{\dot{\alpha}}{}_{\dot{\beta}}(\Lambda)}
$$

Define transformation for general tensors with upper/lower dotted/undotted Weyl spinor indices:

29

$$
T^{\alpha\cdots\dot{\beta}\cdots}_{\gamma\cdots\dot{\delta}\cdots} \rightarrow S_{\gamma}^{\gamma'}\overline{S}^{\dot{\beta}}{}_{\dot{\beta}'}(S^{-1})_{\alpha'}^{\alpha}(\overline{S}^{-1})^{\dot{\delta}'}{}_{\dot{\delta}}\cdots T^{\alpha'\cdots\dot{\beta}'\cdots}_{\gamma'\cdots\dot{\delta}'\cdots}
$$

$$
\Psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} \qquad \psi_L = \text{left-handed Weyl spinor} \n\Phi_L = -\frac{i}{2} \omega_{\mu\nu} \sigma^{\mu\nu} \psi_L \n\delta \psi_R = -\frac{i}{2} \omega_{\mu\nu} \overline{\sigma}^{\mu\nu} \psi_R
$$
\ndifferent reps of SO(3, 1)

Index notation:

$$
(\psi_L)_{\alpha} \qquad \alpha = 1, 2, = \text{Weyl spinor index}
$$

\n
$$
(\psi_R)^{\dot{\alpha}} \qquad \dot{\alpha} = 1, 2, = \text{dotted Weyl spinor index}
$$

\n
$$
\delta(\psi_L)_{\alpha} = -\frac{i}{2} \omega_{\mu\nu} (\sigma^{\mu\nu})_{\alpha}{}^{\beta} (\psi_L)_{\beta}
$$

\n
$$
\delta(\psi_R)^{\dot{\alpha}} = -\frac{i}{2} \omega_{\mu\nu} (\overline{\sigma}^{\mu\nu})^{\dot{\alpha}}_{\dot{\beta}} (\psi_R)^{\dot{\beta}}
$$

Invariant tensors:

\n
$$
\sigma_{\alpha\dot{\beta}}^{\mu} = \underbrace{\Lambda^{\mu}{}_{\nu}S_{\alpha}{}^{\gamma}\sigma_{\gamma\dot{\delta}}^{\nu}(\bar{S}^{-1})^{\dot{\delta}}{}_{\dot{\beta}}}_{\text{Lorentz transformation of } \sigma_{\alpha\dot{\beta}}^{\mu}
$$
\n
$$
\overline{\sigma}^{\mu\dot{\alpha}\beta} = \Lambda^{\mu}{}_{\nu}(\bar{S}^{-1})^{\dot{\alpha}}{}_{\dot{\gamma}}\overline{\sigma}^{\nu\dot{\gamma}\delta}(S^{-1})_{\delta}^{\beta}
$$
\nAlso:

\n
$$
\underbrace{\epsilon^{\alpha\beta} = \epsilon^{\dot{\alpha}\dot{\beta}} = -\epsilon_{\alpha\beta} = -\epsilon_{\dot{\alpha}\dot{\beta}} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{\epsilon_{\alpha\beta} = \frac{S_{\alpha}{}^{\gamma}S_{\beta}{}^{\delta}\epsilon_{\gamma\delta}}_{\dot{\gamma}} \text{Lorentz transformation of } \epsilon_{\alpha\beta}}
$$
\n
$$
\epsilon^{\dot{\alpha}\dot{\beta}} = \overline{S}^{\dot{\alpha}}{}_{\dot{\gamma}}\overline{S}^{\dot{\beta}}{}_{\dot{\delta}}\epsilon^{\dot{\gamma}\dot{\delta}} \quad \text{etc.}
$$

Summarize: invariant tensors

$$
\begin{array}{ccc}\n\sigma^{\mu}_{\alpha\dot{\beta}} & \bar{\sigma}^{\mu\dot{\alpha}\beta} \\
\epsilon^{\alpha\beta} & \epsilon_{\alpha\beta} & \epsilon^{\dot{\alpha}\dot{\beta}} & \epsilon_{\dot{\alpha}\dot{\beta}}\n\end{array}
$$

can be used to form invariants by contracting indices.

Proof of invariance identities follows from identities on 2×2 matrices. For example, invariance of $\epsilon_{\alpha\beta}$:

$$
0 = \delta \epsilon_{\alpha\beta} = -\frac{i}{2} \omega_{\mu\nu} (\sigma^{\mu\mu})_{\alpha}{}^{\alpha'} \epsilon_{\alpha'\beta} - \frac{i}{2} \omega_{\mu\nu} (\sigma^{\mu\mu})_{\beta}{}^{\beta'} \epsilon_{\alpha\beta'}
$$
\n
$$
\Leftrightarrow 0 = \sigma^{\mu\nu} \epsilon + \sigma^{\mu\nu} \epsilon^{T}
$$
\n
$$
\epsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
$$
\n\nFollowing from $\epsilon \sigma^{\mu} \epsilon^{T} = (\overline{\sigma}^{\nu})^{*}$ \n
$$
\epsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
$$
\n\nSubstituting the equation $\phi^{\alpha} = \epsilon^{\alpha\beta} \psi_{\beta}$ \n
$$
\psi_{\alpha}^{\dagger} = (\psi_{\alpha})^{\dagger}
$$
\n
$$
\psi_{\alpha}^{\dagger} = (\psi_{\alpha})^{\dagger}
$$
\n\nSubstituting the equation $\phi^{\mu} \epsilon^{T} = (\overline{\sigma}^{\nu})^{*}$ \n
$$
\epsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
$$
\n
$$
\psi_{\alpha}^{\dagger} = (\psi_{\alpha})^{\dagger}
$$
\n
$$
\psi^{\dagger \alpha} = \epsilon^{\alpha \beta} \psi_{\alpha}^{\dagger}
$$
\n
$$
\psi^{\dagger \alpha} = \epsilon^{\alpha \beta} \psi_{\alpha}^{\dagger}
$$
\n
$$
\psi^{\dagger \alpha} = \epsilon^{\alpha \beta} \psi_{\alpha}^{\dagger}
$$

Complex conjugation relates dotted/undotted spinor indices:

$$
\left[\left[(\sigma^{\mu\nu})_{\alpha}{}^{\beta}\right]^*=(\overline{\sigma}^{\mu\nu})^{\dot{\beta}}{}_{\dot{\alpha}}\right]
$$

 \Rightarrow makes sense to write

$$
(\psi_{\alpha})^{\dagger} = \psi_{\alpha}^{\dagger} \qquad \text{etc.}
$$

Any spinor Lagrangian can be written entirely in terms of L Weyl spinors.

Given ψ_{α} , can define Weyl spinors with any index structure:

$$
\begin{pmatrix}\n\psi^{\alpha} = \epsilon^{\alpha\beta}\psi_{\beta} \\
\psi_{\dot{\alpha}}^{\dagger} = (\psi_{\alpha})^{\dagger} \\
\psi^{\dagger\dot{\alpha}} = \epsilon^{\dot{\alpha}\dot{\beta}}\psi_{\dot{\alpha}}^{\dagger}\n\end{pmatrix}
$$

Invariant Lagrangians (finally!)

Most general quadratic Lagrangian for a Weyl spinor ψ_{α} :

$$
\left(\mathcal{L} = \psi_{\dot{\alpha}}^{\dagger} i \overline{\sigma}^{\mu \dot{\alpha} \beta} \partial_{\mu} \psi_{\beta} - \frac{1}{2} \left(\epsilon^{\alpha \beta} \psi_{\alpha} \psi_{\beta} + \text{h.c.} \right)\right)
$$

The mass term is a Majorana mass term.

Note that it breaks any $U(1)$ symmetry acting on ψ .

Nonzero mass term requires anticommuting spinor fields:

$$
\epsilon^{\alpha\beta} = -\epsilon^{\beta\alpha} \qquad \psi_{\alpha}\psi_{\beta} = -\psi_{\beta}\psi_{\alpha}
$$

Canonical quantization: quantum fermion fields obey anticommutation relations, $\hbar \rightarrow 0$ limit gives anticommuting classical spinor fields.

Path integral quantization: fermion path integral is over anticommuting fields. 35 36

Check $\mathcal{L}^{\dagger} = \mathcal{L}$ (needed for Hermitian quantum Hamiltonian)

To agree with Hermitian conjugation of operators, complex conjugation of classical anticommuting spinors must be defined to reverse the order of spinors:

$$
(\psi_{\alpha}\chi_{\beta})^{\dagger} = \chi_{\dot{\beta}}^{\dagger}\psi_{\dot{\alpha}}^{\dagger}
$$
 (no change of sign)

With this rule, we have

$$
(\epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta})^{\dagger} = \epsilon^{\dot{\alpha}\dot{\beta}}\psi^{\dagger}_{\dot{\beta}}\psi^{\dagger}_{\dot{\alpha}} = -\epsilon^{\dot{\alpha}\dot{\beta}}\psi^{\dagger}_{\dot{\alpha}}\psi^{\dagger}_{\dot{\beta}}
$$

\n
$$
(\psi^{\dagger}_{\dot{\alpha}}i\overline{\sigma}^{\mu\dot{\alpha}\beta}\partial_{\mu}\psi_{\beta})^{\dagger} = -i\partial_{\mu}\psi^{\dagger}_{\dot{\beta}}\underbrace{(\overline{\sigma}^{\mu\dot{\beta}\alpha})^*}_{= \overline{\sigma}^{\mu\dot{\beta}\alpha}}\psi_{\beta}
$$

\n
$$
= \overline{\sigma}^{\mu\dot{\beta}\alpha} \underbrace{(\overline{\sigma}^{\mu})^{\dagger} = \overline{\sigma}^{\mu}}_{= \overline{\sigma}^{\mu\dot{\beta}\alpha}\partial_{\mu}\psi_{\alpha}}
$$
 (integrate by parts)
\n
$$
\Rightarrow \mathcal{L}^{\dagger} = \mathcal{L}.
$$

Expressions look cleaner when spinor indices are implicit:

$$
\psi_{\dot{\alpha}}^{\dagger} \overline{\sigma}^{\mu \dot{\alpha} \beta} \psi_{\beta} = \psi^{\dagger} \overline{\sigma}^{\mu} \psi
$$

$$
\chi^{\alpha} \sigma_{\alpha \dot{\beta}}^{\mu} \chi^{\dagger \dot{\beta}} = \chi \sigma^{\mu} \chi^{\dagger}
$$

In general, omit summed indices

 α_{α} $_{\alpha}$ and $_{\dot\alpha}{}^{\dot\alpha}$

Example:

$$
\chi \psi = \chi^{\alpha} \psi_{\alpha} = \epsilon^{\alpha \beta} \chi_{\beta} \psi_{\alpha} = -\underbrace{\epsilon^{\alpha \beta} \psi_{\alpha}} \chi_{\beta}
$$

\n
$$
= \psi^{\beta} \chi_{\beta} = -\epsilon^{\beta \alpha} \psi_{\alpha} = -\psi^{\beta}
$$

\n
$$
= +\psi \chi
$$

\n
$$
\psi^{\alpha} = \epsilon^{\alpha \beta} \psi_{\beta} \qquad \psi_{\alpha} = \epsilon_{\alpha \beta} \psi^{\beta} \qquad \text{etc.}
$$

(c) The most general operator solution to the Weyl equation is $\hat{\psi}_{\alpha}(x) = \int \frac{d^3 p}{(2\pi)^{3/2} (2|\vec{p}|)^{1/2}} \left[\hat{\alpha}(\vec{p}) w_{\alpha}(p) e^{-ip \cdot x} \leftarrow \int \frac{p^0}{\sqrt{p^0 + \hat{p}^0}} \right]$

Imposing the anticommutation relations

$$
\{\hat{\alpha}(\vec{\rho}), \hat{\alpha}^{\dagger}(\vec{\rho}')\} = \{\hat{b}(\vec{\rho}), \hat{b}^{\dagger}(\vec{\rho}')\} = \delta^{3}(\vec{\rho} - \vec{\rho}')
$$

$$
\{\hat{\alpha}(\vec{\rho}), \hat{\alpha}(\vec{\rho}')\} = \{\hat{b}(\vec{\rho}), \hat{b}(\vec{\rho}')\} = \{\hat{\alpha}(\vec{\rho}), \hat{b}^{\dagger}(\vec{\rho}')\} = 0
$$

compute the equal-time anticommutator

$$
\{\hat{\psi}_\alpha(t,\vec{x}),\hat{\psi}^\dagger_\beta(t,\vec{y})\}
$$

You will need the identity

 $W_{\alpha}(p)W^{\dagger}_{\dot{\beta}}(p) = \sigma^{\mu}_{\alpha\dot{\beta}}p_{\mu}$ (fixes normalization of $u_{\alpha}(p)$) which you can verify in the standard frame.

Consider theory of a single massless Weyl fermion ψ_{α} with the Lagrangian given above.

(a) Show that the equation of motion is the *Weyl equation*

$$
i\bar{\sigma}^{\mu\dot{\alpha}\beta}\partial_{\mu}\psi_{\beta}=0
$$

Multiply on the left by $\sigma^{\nu}\partial_{\nu}$ to show that the Weyl equation implies the massless Klein-Gordon equation:

 $\Box \psi_{\alpha} = 0$

(b) Consider the most general plane wave solution

$$
\psi_{\alpha}(x) = w_{\alpha}(p) e^{-ip \cdot x}
$$

By going to the frame $p^{\mu} = (E, 0, 0, E)$, show that there is a unique solution for $w_{\alpha}(p)$.

38

(d) Show that the canonical momentum is

$$
\pi^{\alpha} = \frac{\partial \mathcal{L}}{\partial \dot{\psi}_{\alpha}} = -i \psi^{\dagger}_{\dot{\beta}} i \overline{\sigma}^{0\dot{\beta}\alpha}
$$

(Remember that ψ_{α} is a classical anticommuting field.)

(e) Show that the anticommutation relation you derived above is equivalent to the canonical anticommutation relation

$$
\{\,\hat{\pi}^\alpha(t,\vec{x}),\hat{\psi}_\beta(t,\vec{y})\}=-i\delta^\alpha{}_\beta\delta^3(\vec{x}-\vec{y})
$$

This exercise shows that a Weyl fermion has 2 propagating degrees of freedom.

Note: many textbook treatments of the Dirac equation change the sign of π^{α} and the canonical anticommutation relations to get the correct commutation relations for the creation and annihilation operators.

Simplest theory with a chance of Bose-Fermi symmetry:

- $\psi_{\alpha} = L$ Weyl fermion
- ϕ = complex scalar (2 degrees of freedom)

$$
\mathcal{L} = \psi^{\dagger} i \overline{\sigma}^{\mu} \partial_{\mu} \psi + \partial^{\mu} \phi^{\dagger} \partial_{\mu} \phi
$$

$$
m=0 \text{ for now}
$$

Note this preserves *U***(**1**)** symmetry

 $\Psi_{\alpha} \rightarrow e^{i\theta\psi}$, $\Phi \rightarrow e^{i\theta}\phi$

Write most general SUSY transformation:

- \bullet $\delta\phi \sim \psi$, $\delta\psi \sim \phi$
- *•* Lorentz/spinor indices match
- *• U***(**1**)** invariant
- 42

$$
\delta \phi = \underbrace{\xi \psi}_{= \xi^{\alpha} \psi_{\alpha}} \xi^{\alpha} = \text{spinor "parameter"}
$$
\n
$$
= \xi^{\alpha} \psi_{\alpha}
$$
\nNote: $\xi^{\dagger} \psi^{\dagger}$ would violate $U(1)$.

\n
$$
[\phi] = 1, \quad [\psi] = \frac{3}{2} \implies [\underline{\xi}] = -\frac{1}{2}
$$
\n
$$
\delta \psi_{\alpha} = c_0 \xi_{\alpha} \phi + c_1 \underbrace{(\sigma^{\mu} \xi^{\dagger})_{\alpha}}_{= \sigma^{\mu}_{\alpha \beta} \xi^{\dagger \beta}} \delta_{\mu} \phi + c_2 \xi_{\alpha} \Box \phi + \cdots
$$
\n
$$
= \sigma^{\mu}_{\alpha \beta} \xi^{\dagger \beta}
$$
\n
$$
[c_0] = 1 \qquad [c_1] = 0 \qquad [c_2] = -1 \qquad \cdots
$$
\nRequired is the result of the equation $[\phi] = \frac{1}{2} \pi^{\mu} \phi$.

Compute δ*L*: $\delta(\partial^{\mu}\phi^{\dagger}\partial_{\mu}\phi) = \partial^{\mu}\phi^{\dagger}\partial_{\mu}(\delta\phi) + \text{h.c.}$ $= \partial^{\mu} \phi^{\dagger} \xi \partial_{\mu} \psi + \text{h.c.}$ depends on E^{\dagger} $\delta(\psi^{\dagger} i \overline{\sigma}^{\mu} \partial_{\mu} \psi) = \delta \psi^{\dagger} i \overline{\sigma}^{\mu} \partial_{\mu} \psi + \text{h.c.}$ $=$ $i c^* \partial_\mu \phi^\dagger \xi \sigma^\mu \overline{\sigma}^\nu \partial_\nu \psi$ + h.c. Use identity $= -ic^* \partial_\mu \partial_\nu \phi^\dagger \xi \sigma^\mu \overline{\sigma}^\nu \psi + h.c.$ $\sigma^{\mu}\bar{\sigma}^{\nu} + \sigma^{\nu}\bar{\sigma}^{\mu} = 2n^{\mu\nu}1$ ₂ $\Rightarrow \delta(\psi^{\dagger} i \overline{\sigma}^{\mu} \partial_{\mu} \psi_{\beta} = -ic^* \Box \phi^{\dagger} \xi \psi + h.c.$ $=$ $i c^* \partial^\mu \phi^\dagger \xi \partial_\mu \psi +$ h.c. \Rightarrow $\delta \mathcal{L} = 0$ for $c = -i$. 44

Summarize:
$$
\delta \phi = \xi \psi
$$
 $\delta \psi = -i \sigma^{\mu} \xi^{\dagger} \partial_{\mu} \phi$

Noether current:

$$
\int_{\alpha}^{\mu} = (\sigma^{\vee} \overline{\sigma}^{\mu} \psi)_{\alpha} \partial_{\nu} \phi^{\dagger}
$$

Note: carries extra spacetime (spinor) index \Rightarrow sign of spacetime symmetry

Check conservation:

$$
\partial_{\mu}J^{\mu}_{\alpha} = (\sigma^{\nu}\frac{\overline{\sigma}^{\mu}}{\sigma^{\mu}})_{\alpha}{}^{\beta}\partial_{\mu}\psi_{\beta}\partial_{\nu}\phi^{\dagger} + (\sigma^{\nu}\overline{\sigma}^{\mu})_{\alpha}{}^{\beta}\psi_{\beta}\partial_{\mu}\partial_{\nu}\phi^{\dagger}
$$

= 0 $\rightarrow \eta^{\mu\nu}\delta_{\alpha}{}^{\beta}$
 $\rightarrow \partial_{\mu}J^{\mu}_{\alpha} = 0$ (on classical solutions)

Quantum theory:
\n
$$
\hat{\psi}_{\alpha}(x) = \int \frac{d^3 p}{(2\pi)^{3/2} (2|\vec{p}|)^{1/2}} \left[\hat{\alpha}(\vec{p}) w_{\alpha}(p) e^{-ip \cdot x} + \hat{b}^{\dagger}(\vec{p}) w_{\alpha}(p) e^{+ip \cdot x} \right]
$$
\nNote: 2 degrees of freedom in quantum Weyl fermion.
\n
$$
\hat{\phi}(x) = \int \frac{d^3 p}{(2\pi)^{3/2} (2|\vec{p}|)^{1/2}} \left[\hat{c}(\vec{p}) e^{-ip \cdot x} + \hat{d}^{\dagger}(\vec{p}) e^{+ip \cdot x} \right]
$$
\n
$$
\Rightarrow \left[\hat{Q}_{\alpha} = \sqrt{2} \int d^3 p u_{\alpha}(\vec{p}) \left[\hat{c}^{\dagger}(\vec{p}) \hat{\alpha}(\vec{p}) + \hat{b}^{\dagger}(\vec{p}) \hat{d}(\vec{p}) \right] \right]
$$
\n
$$
\hat{Q}_{\alpha}^{\dagger} = \sqrt{2} \int d^3 p u_{\alpha}^{\dagger}(\vec{p}) \left[\hat{\alpha}^{\dagger}(\vec{p}) \hat{c}(\vec{p}) + \hat{d}^{\dagger}(\vec{p}) \hat{b}(\vec{p}) \right]
$$

Noether charge:

$$
Q_{\alpha} = \sqrt{2} \int d^{3}x J_{\alpha}^{0}
$$
 (normalization is conventional)

$$
\frac{d}{dt} Q_{\alpha} = 0
$$
 (on classical solutions)

fermion particle:
$$
|\psi(\vec{p})\rangle = \hat{\alpha}^{\dagger}(\vec{p})|0\rangle
$$

\nfermion antiparticle: $|\bar{\psi}(\vec{p})\rangle = \hat{b}^{\dagger}(\vec{p})|0\rangle$
\nscalar particle: $|\phi(\vec{p})\rangle = \hat{c}^{\dagger}(\vec{p})|0\rangle$
\nscalar antiparticle: $|\bar{\phi}(\vec{p})\rangle = \hat{d}^{\dagger}(\vec{p})|0\rangle$
\n $\hat{Q}_{\alpha}|\psi(\vec{p})\rangle = \sqrt{2}u_{\alpha}(\vec{p})|\phi(\vec{p})\rangle$ $\hat{Q}_{\alpha}|\bar{\psi}(\vec{p})\rangle = 0$
\n $\hat{Q}_{\alpha}|\phi(\vec{p})\rangle = 0$ $\hat{Q}_{\alpha}|\bar{\phi}(\vec{p})\rangle = \sqrt{2}u_{\alpha}(\vec{p})|\bar{\psi}(\vec{p})\rangle$
\n $\hat{Q}_{\alpha}^{\dagger}|\psi(\vec{p})\rangle = 0$ $\hat{Q}_{\alpha}^{\dagger}|\bar{\psi}(\vec{p})\rangle = \sqrt{2}u_{\alpha}^{\dagger}(\vec{p})|\bar{\phi}(\vec{p})\rangle$
\n $\hat{Q}_{\alpha}^{\dagger}|\phi(\vec{p})\rangle = \sqrt{2}u_{\alpha}^{\dagger}(\vec{p})|\psi(\vec{p})\rangle$ $\hat{Q}_{\alpha}^{\dagger}|\bar{\phi}(\vec{p})\rangle = 0$
\nSummarize: $\bar{\psi} \xrightarrow{\mathcal{Q}^{\dagger}} \bar{\phi} \xrightarrow{\mathcal{Q}} \bar{\psi} \qquad \psi \xrightarrow{\mathcal{Q}} \phi \xrightarrow{\mathcal{Q}^{\dagger}} \psi$

Use the free-field representation to compute
\n
$$
\{\hat{Q}_{\alpha}, \hat{Q}_{\beta}^{\dagger}\} = 2 \int d^{3}p \, d^{3}q \, u_{\alpha}(\vec{p})u_{\beta}^{\dagger}(\vec{q})
$$
\n
$$
\times \left[\{\hat{c}^{\dagger}(\vec{p})\hat{a}(\vec{p}), \hat{a}^{\dagger}(\vec{q})\hat{c}(\vec{q}) \} + \{\hat{b}^{\dagger}(\vec{q})\hat{a}(\vec{q}), \hat{d}^{\dagger}(\vec{q})\hat{b}(\vec{q}) \} \right]
$$
\n
$$
\{\hat{c}^{\dagger}\hat{a}, \hat{a}^{\dagger}\hat{c} \} = \{\hat{a}, \hat{a}^{\dagger}\}\hat{c}^{\dagger}\hat{c} + [\hat{c}, \hat{c}^{\dagger}]\hat{a}^{\dagger}\hat{a}
$$
\n
$$
a, b = \text{fermion}
$$
\n
$$
\{\hat{b}^{\dagger}\hat{d}, \hat{d}^{\dagger}\hat{b} \} = \{\hat{b}, \hat{b}^{\dagger}\}\hat{d}^{\dagger}\hat{d} + [\hat{a}, \hat{a}^{\dagger}]\hat{b}^{\dagger}\hat{b}
$$
\n
$$
c, d = \text{boson}
$$
\n
$$
\{\hat{Q}_{\alpha}, \hat{Q}_{\beta}^{\dagger}\} = 2 \int d^{3}p \underbrace{u_{\alpha}(\vec{p})u_{\beta}^{\dagger}(\vec{p})}_{= \sigma_{\alpha\beta}^{\mu}\rho_{\mu}}
$$
\n
$$
= 2\sigma_{\alpha\beta}^{\mu}\hat{P}_{\mu}
$$
\n
$$
\hat{P}_{\mu} = 4\text{-momentum operator}
$$

$$
\left[\{ \hat{Q}_{\alpha}, \hat{Q}_{\dot{\beta}}^{\dagger} \} = 2 \sigma^{\mu}_{\alpha \dot{\beta}} \hat{P}_{\mu} \right]
$$

Q ~ square root of spacetime translations \Rightarrow SUSY is a spacetime symmetry

Similarly,

$$
\left\{ \begin{aligned}\n \{\hat{Q}_{\alpha}, \hat{Q}_{\beta}\} &= 0 & \{\hat{Q}_{\dot{\alpha}}^{\dagger}, \hat{Q}_{\dot{\beta}}^{\dagger}\} &= 0 \\
 \hline\n [\hat{P}_{\mu}, \hat{Q}_{\alpha}] &= 0 & \[\hat{P}_{\mu}, \hat{Q}_{\alpha}^{\dagger}\] &= 0\n \end{aligned}\right.
$$

This is the famous ($N = 1$) SUSY algebra.

Drop the hats from now on...

Consequences of SUSY Algebra:

General state can be expanded in eigenstates of \hat{P}^{μ} with eigenvalue p^{μ} = timelike.

Choose frame $p^{\mu} = (E, 0, 0, 0) \Rightarrow$

$$
\{Q_1, Q_1^{\dagger}\} = \{Q_2, Q_2^{\dagger}\} = 2E \qquad (Q_1)^2 = \dots = (Q_2^{\dagger})^2 = 0
$$

$$
H = \frac{1}{2}(Q_1 + Q_1^{\dagger})^2 = \frac{1}{2}(Q_2 + Q_2^{\dagger})^2
$$

= square of Hermitian operator

 $\langle \psi | H | \psi \rangle \geq 0$ i.e. states have positive energy. \Rightarrow

Vacuum state is invariant: $\hat{Q}_{\alpha}|0\rangle = 0$, $\hat{Q}_{\alpha}^{\dagger}|0\rangle = 0$

(unbroken SUSY) $H|0\rangle = 0$ \Rightarrow

Vacuum energy vanishes \Rightarrow a clue to cosmological constant \sim 51 \sim 52

Massless 1-particle states:

 $\lambda = \hat{\rho} \cdot \vec{S}$ = helicity $|\vec{\rho}, \lambda\rangle$ Choose frame $p^{\mu} = (E, 0, 0, E)$ $E > 0$ ${Q_1, Q_1^{\dagger} = 0$ ${Q_2, Q_2^{\dagger}} = 4E$ This is the algebra of one fermionic creation and annihilation operator Q_2^{\dagger} , Q_2 [Q_1^{\dagger} , Q_1 act trivially]. $[Q_{\alpha},\hat{\rho}\cdot\vec{S}] = [Q_{\alpha},M^{12}]=-(\sigma^{12})_{\alpha}{}^{\beta}Q_{\beta}$ $[Q_2, \hat{p} \cdot \vec{5}] = +\frac{1}{2}Q_2$ $[Q_2^{\dagger}, \hat{p} \cdot \vec{5}] = -\frac{1}{2}Q_2^{\dagger}$ \Rightarrow Q₂ (Q₂) acts as raising (lowering) operator for helicity.

Irreducible 1-particle representations:

 53

$$
|\vec{p}, \lambda\rangle
$$
\n
$$
|\vec{p}, \lambda + \frac{1}{2}\rangle
$$
\n
$$
|\vec{p}, 0\rangle
$$
\n
$$
CPT|\vec{p}, 0\rangle
$$
\n
$$
\leftrightarrow \text{complex scalar}
$$
\n
$$
\lambda = 0:
$$
\n
$$
|\vec{p}, \frac{1}{2}\rangle
$$
\n
$$
|\vec{p}, -\frac{1}{2}\rangle
$$
\n
$$
\leftrightarrow \text{Weyl fermion}
$$
\n
$$
\lambda = \frac{1}{2}:
$$
\n
$$
|\vec{p}, \frac{1}{2}\rangle
$$
\n
$$
|\vec{p}, -\frac{1}{2}\rangle
$$
\n
$$
\leftrightarrow \text{Weyl fermion}
$$
\n
$$
\lambda = \frac{1}{2}:
$$
\n
$$
|\vec{p}, 1\rangle
$$
\n
$$
|\vec{p}, -1\rangle
$$
\n
$$
\leftrightarrow \text{mussless gauge field}
$$
\n
$$
\text{This is the massless vector multiplet.}
$$
\n
$$
\text{These are the multiplets that describe massless particles of }\n\sin \leq 1
$$