Use the free-field representation to compute
(0, 031 =2 [ o Pqwa(BIw}(@)
x [{¢'(®)aP), a'@e@}
+{b(@)d(@), dT(Db@)}]
a, b =fermion
b, btYatd + [d, dT16th ¢, d = boson

{0, 0} =2 J Pp Wa(PYW(P) | &' (B)a(P) + -+ +d'(PA(P)]

—_—
_ u
= Ua[;pﬂ
= Zagﬁﬁu P, = 4-momentum operator

2

(€0, 01y =204, ]

Similarly,
(0n0y=0  t0L0lr=0]

This is the famous (N = 1) SUSY algebra.

Drop the hats from now on...

Consequences of SUSY Algebra:

PH =0 {0, Op}
PO =010, + 0,01 + 010, + 0,0}
For any state |¢)
(WIECLY) = 1O 1)1 + 10, 19) 1% + IO 19)IZ + 10, 1) I
>0
If SUSY is unbroken, the vacuum state is SUSY invariant:
Qal0)=0,  Oflo)y=0
= PH|0)=0
In particular, the vacuum energy vanishes.

A clue to the cosmological constant problem?
Requires supergravity...




Massless 1-particle states:

1B, A) A =p-5 = helicity
Choose frame p# = (E, 0,0, E) E>0

{0,,01}=0

{Q,, Q} =4E

This is the algebra of one fermionic creation and annihilation
operator Qb, Q, [Q], Q, act trivially].

I:(?CXII5 'g] = [Oar Mlz] = _(alz)aBQB
[02,6-51=+30;  [Q},p-51=-308

= Q> (OE) acts as raising (lowering) operator for helicity.

Irreducible 1-particle representations:

1B, A) cpr 1B, =A)

> = 1
1B, A+ 3) 1P, =2 = 3)

|B,0) CPT|P,0) « complex scalar
A=0: 1 .
5,3) 1B —3) — Weyl fermion

This is the chiral multiplet.
1 8.3) 1B, -3) — Weyl fermion

A=
’ |5, 1) 1B, —1) «— massless gauge field

This is the massless vector multiplet.

These are the multiplets that describe massless particles of
spin < 1.

A good pedagogical discussion for this subject:

D. Bertonini, J. Thaler, Z. Thomas, “Super-tricks for Super-
space” (TASI 2012 lectures), arXiv:1302.6229.

Warning: although this uses the same spinor conventions as
we do, but uses a non-conventional definition of the SUSY
generators. It is easy to translate between them:

(them) _ _ A~(us)
Qithem) = Q!

P(them) — _P(us)
M M




Lorentz transformations act naturally on spacetime:
xH — AH xVY

SUSY acts naturally on superspace.
superspace = {(x, 69, 6%)}

6%, 6% = anticommuting “coordinates”

89 = gt — (gt
{69, 6} =0 (6%, 6%} =0

= 0lol =6262 =0, etc.

The natural variables for SUSY quantum field theory are
therefore superfields = functions of superspace.

9

Superfields are defined by Taylor expanding in 6, 6.
6, 6 anticommute = expansion contains finitely many terms.

Function of one real anticommuting variable 6:
f(8)=a+ b6 62=0

Superfield = function of 6, 69:
Highest component = 61626167
Simplify expansion using identities

0463 = 2 x 2 antisymmetric matrix « €qp

— (. — .
[Gd B=%€a399] [9“9‘3=—%e“569] 66 = 6,6

10

General (scalar) superfield:

[ S(x, 6,8) = A(X) + 6%Ya(x) + Bak¥(X)

+ 66B(x) + 66C(x)

+ 0018V, (x)

+(88)6°Aa(x) + (86)847(X)
+(66)(66)D(x)

. J

S «— (AI ()Ual )?or, BI CI V,Ul Aal ﬁa, D)

6%, 6% = algebraic placeholders

Analogy: complex numbers:
z=x+ly 2=-1
Z—(x,y) (= placeholder
Z1+2z2 = (X1+Xx2, y1+Yy2)

z123 «— (X1X2 — Y1Y2, X1Y2 + X2Y1)
Superfields naturally add and multiply together:
51(x, 0,6)+52(x,6,0) = A1+ Az + 6% (Y10 + Y2a) + -
S51+S2 <= (A1 +A2, Y10+ Y20, .- .)
51(x, 6, 8)S2(x, 6, 6) = A1A2 + 6%(A1y2a +AzY1a) + - -

5152 = (A1A2, A1¢2a +A2¢14q, .. .)




Spacetime translations generated by derivative operator:

$(x) — B(x — a) = €9Pug(x)

5¢(x) = ia"Pup(x)

Define SUSY transformation of superfields:

[5S(x, 8, 8) = i(a"Py + E%Qu + E50™)S(x, 6, é)]

Qa, Q% = derivative operators

(E%Qq)t = E4Q"

0
Derivative operators: in addition to o, = —,

IxH
d 0
define —, — :

009 964
0 0 _

— 0B =¢5.5 —6,=0

[aea ’ ] 269 P

0 _ . 0

004 904

Careful about signs:

0 0
5 (WPOY) = — (—07YP) = 5%,y

006%
0
Anticommute spinors to the left before acting with Py
. 0 d
Exercise: Show that — = —¢%F—
- 0604 d0F
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Define SUSY generators acting on superfields:

( )

. o . =
[Q(x = ﬁ + l(oue)aa”

—4 3] .

iQ” = — +i(6"0)%,,
O

. J

Check that they satisfy SUSY algebra:

{Qa, Qp} = 2i0, 40,

Remember P, = (9,

SUSY covariant derivatives:
S =superfield = 98,5 = superfield?
Does 9,,S transform like a superfield?

8(3uS) = 9u(8S) = 3, [i(EQ + EQ)S]

= i(EQ +£Q)3,S
Works because [8y, Qal =[dy, Qal=0
& [Py, Qal =[Py, Qs] =0

On the other hand,

d
——S # superfield
395 # sup

(-85} #0




Deﬁrle SUSY covariant derivatives that anticommute with

3] 0 _
, _ P
Da ? - l(U“Q)aau [Q(X - 909 + l(o e)aau
—a 9 a0
D = aT - l(aue)aau Q = ? + 1(0”9)0’6,1

a a

r

s
~ _ . u

0 = {Da, D} = {Da, Dy} }

DqS = superfield:

8(DaS) = Da(6S) = Do [i(EQ + EQ)S]
= +i(§Q + EQ)DqS

+ sign because {Dq, P} = {Dq, Eg} =0

d 0
e.g. — 58767 = ——2(67E") = ~57aE’

Chiral superfields:

SUSY covariant derivative allows us to construct simpler su-
perfields with fewer component fields.

Define chiral superfield ® by condition

[E_Ja@(x, 0,8) = o]

= & is independent of something?
Change variables in superspace: (x*, 6, 6) — (y, 6, 6)
yH=xH+i65"0
\V—/ _
=—-00"6

note [6] = [6] = -3

Work out Dy, Dg in terms of new variables:

—4 0 d
D= — —i(c"9)d—

904 OxH
0 ayH 9 . oyY
S W g 2
904 0904 OyH i)iiay
, =i@er =6y
" 204
0 0
Do = W_l( “9)0(
] oyH 9 oyy o
= + — ( IJ )a__
90%  30% gyH axH ayV
~—— ~—

= —i(0"6)a =6
d i)
=— —2i(o —
909 Y ayH

20




Summarize:

s 5 _ _ 9
D =— Da=——2[(0u9)a—
69@ 00% ay“

Dy® =0 = & = function of (y, 8) (independent of 6)

Component fields: “chiral representation”

[<I>(y, ) = ¢(y) + V26%u(y) + 66F(y)] /

® — (9, Ya,F)

Can expand to write as function of (x, 6, 6):

o(y) = d(x) + id,0(x)60"0 + - --

21

Dsd" =0 = &" = chiral superfield
In fact, for any function f($)
Daf()=0 = f(®) = chiral superfield

To get a chiral superfield, f(®) cannot depend on &.
That is, f(®) must be a holomorphic function of .
This has far-reaching implications, as we will see below.

Note that
Dad"=0
Superfields satisfying this constraint are called anti-chiral.

The properties of anti-chiral superfields can be worked out
by complex conjugating the results for chiral superfields.

22

Can use Dgy, Dy to define component fields by projection:

¢= ‘P‘e,é:o = 9|

1 9 1 :
tra terms vanish
Yo = ®| = —Dqg?d| ex 1S
T V2000 T 2 7 for 6,6 =0
0 O
F 7€ 393 aeﬁq)l 7DD9|

Use algebra of derivative operators to compute SUSY trans-
formation of component fields:

5¢ = i(EQ +EQ)%|
_ 1
=(ED+ED)®| = —

V2

—
because we defined Qq = \/Efd-jxlg

23

&Y

[ __
6 a = = Da¢
Y 1/5(50+ EQ)Da?|

i __
= —Dg4 o
73 (EQ +EQ)9|

1 __
i (ED +&ED)9%|

1., -
== [~184DD®| — 2{(08)ady?]

= \/2EaF — iV 2(08)adut
Similarly,

6F = —iv/2EG o, (exercise)

24




Summarize:

¢ =9
Y
lﬂa—ﬁ a
F=—2DD9|
( 5 j 1 '
¢ = ﬁ&/f
8o =V 2EaF — iv/2(08)ady0
8F = —iv/2Ec" 3,y

L J
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Write SUSY invariant Lagrangians using Dq, Dg:

1
[CD — 1_6D2D2K|] K = K" = real superfield = EB =Lp

Here we use shorthand
D? = DD = DD, D’ =DD=DyD%  etc.
Lp is called a “D-term.” Reason:

K=---4+6%6°Dx Dk = highest component field of K

50% of the symbols in SUSY are some form of the letter D...

[Lp]=4 = [K]=2

26

i _> .
6Lp = 1—6D2D (EQ + EQ)K|
i £AVM2 D2
= —(EQ + EQ)D“DK]|
16
1 -~ —~ . .
= E(ED + ED)D?D?K| = total derivative
Reason: DgD?=0

D4D?D?*K = [Dg, D?]1 D?K
;v_/

X 9y

[[50,, D?] = -4io} D%,  [Daq, D?] = 4io} D%, ]

Exercise: Show that if K is a chiral superfield, then £p is a
total derivative.
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Can use similar ideas to construct SUSY invariant from a
chiral superfield:

1, W = chiral superfield
LF=—-—D*W|+ h.c. _
4 = ...QZQZFW “F term”

T —
= L=L,

5 =~ DX(EQ+EQIWI
= - (E0+EQIDW]

1 __
= —Z(ED + ED)D?W| = total derivative
DuD?=0  DgD?W = [Dg, D?]W x 3,
[Fl=4 = [W]=3

28




In the literature, it is common to use the notation
/;D=Jd49K £F=Jd26W+ h.c.

This arises because integration and differentiation are iden-
tical for anticommuting variables:

G}
Jde(a+b6) =b= %(CH_ bo)

We will use this notation with the understanding that it is
defined by

1 1
Jd49K=—D2D2K| Jd29W=——D2W|
16 4

29

We now have all the tools we need to write interacting SUSY
invariant Lagrangians!

® = chiral superfield

= ¢(y) + 6¢(y) + 6%F(y)
[p1=1 = [y]1=3, [F1=2
= [¢]=1

Write the most general SUSY invariant Lagrangian with di-
mensionless couplings:

A
L= Jd“eqﬁ@ + Ud26§¢3 + h.c.)

[d*0] =2, [d?6]=1

30

1 1 _
d*0et® = —p?2D2(&1®)| = —D?2[(D2dN)d
f TgD?D* (@) = —D?[(D?eNe]]

1 -
= —[D?D%e!| 9|
16
+2D%D? &1 | Dy 3|

+52<I>|D2<I>|]

D2D%e!| = [D?,D°18" = 1600t [ (D2 D% =160

DaD?8!| = [Dg, D2]9T| = 4v/2(0 3,4 1)a

jd“e Td = —(Op")¢ + yiota, ¢t + F'F

Ud“e o' = oHoTa,0 + ylio"a P + FTF]
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Evaluate F term for general function of &:

1

sze W(e) = —ZDZW(¢)|
_ L W’ (®)D%® + W (®)D%®D,d
“Z[ ()D?® + W”'(®) a®]|

=W/ (¢)F — W (¢)yy

Udze W(®) =W ($)F - %W"(cb)lﬂlﬂ]

W(®) = superpotential

32




For our theory,

A
L= Jd“eqﬁ@ + Udze§¢3 + h.c.)

= oHota,¢ + yticka,u + FTF
+AP2F — SAPYY + h.c.
We recognize kinetic terms for ¢, ¢ and Yukawa coupling.

Note no derivatives act on F, and L is quadratic on F. We say
that F is an auxiliary field.

The significance of this is that we can integrate out F exactly:
IFT + A9?%|% = FTF + (A$2F + h.c.) + [A¢?|?
L= pta,¢ +ylic"a,y
—2(AYP +h.c)+IFT +Ap?|2 — |Ap??

33

Write functional integral:
z= J [d] [dy] [dF] e/~

Integral over F is trivial:

f[dF] el JIF+20%17 f[d)q e x=Fi g2t

This change of variables is a simple shift, and therefore has
trivial Jacobian.

The functional integral over F is therefore independent of
other fields, and does not affect correlation functions.

= integrating out F gives
L£—aHota,p + ylicha,y
—iyy+h.c)-

34

scalar potential!

|)\¢2|2 /

SUSY relates the Yukawa coupling and the quartic scalar cou-
pling!
Schematically,
¢ 9

. =\ = A2

¢ ¢ - s ¢T
This is exactly the structure we described in the first lecture
for the Higgs-top/stop couplings.

35

Consider a general theory with N chiral superfields

cpa Cl=1,...,N

[C = fd“e o1 o+ Ucﬁe W(®) + h.c.)}

After integrating out auxiliary fields F9

. C1?W(P) o, [OW Taw
T 2 a¢aagP _(W) g7

The most general renormalizable superpotential is

[ W(®) = Kq®® + 3Map®28° + $Aqp 298P 8C ]

(W]l=3 [d]=1

36




Note that integrating out F? is equivalent to imposing its
equation of motion

oW (¢)
apa

We can therefore write the F-term potential as

Fl =
a
VF=F!Fq

Note that Vr > 0, and unbroken SUSY requires

(F9Y =0 for all a

37

Non-renormalization theorem:

The UV divergences of SUSY theories are very constrained.
We will show that the coupling constants in the superpoten-
tial are not renormalized.

The UV divervences of a QFT can be parameterized by lo-
cal terms in the 1Pl effective action that are relevant or
marginal:

M[&] = 1Pl effective action = fd“x Lipi[®]
Lip = Jd49 (5Z)ab¢'z¢b
+ sze (6Ka®7 + 56mMapd?®P + 36Aapc 290 C)
+ h.c.

+ finite (and non-local)

38

N\ = UV cutoff

6Z ~InA\

Sk ~N° +Am+kInA
dm~AN+minA

oA ~InA

The UV divergent terms must respect the symmetries of the
original theory.

This is true as long as the UV regulator that preserves the
symmetries in question.

In the present class of theories we can use e.g. Pauli-Villars
or higher derivative regulator to regulate the theory while
preserving SUSY.

39

A very powerful technique is to promote the couplings k, m, A
to background chiral superfields that transform under SUSY.

This generalized Lagrangian is SUSY invariant as long as we
keep kK, m, A inside the superspace integrals.

Lint = sze (Ka® + 3Map®?®P + 3Aapc299P9C) + h.c.
The Lagrangian is also invariant under a U(N) symmetry
% U9, b
Ka = (U™1)Pakp
Mab — (U1 a(U™ 1) mcq
Aabe = (U™1)9(U™ )8 (U™1Y cAger
That is, all quantities transform according to their index

structure.
40




The coefficients 6Z, 6k, dm, dA must be functions of k, m, A
that respect this U(N) symmetry.

SUSY also requires the coefficients 6k, ém, 6\ to be holomor-
phic functions of k, m, A (i.e. independent of kT, mT, AT).

Claim: most general allowed form is
OAabc = CaAabc INA
6Map =Cm Mgap INA
0Kg = CxKglnA
Cx, Cm, Cx = independent of couplings

Note there are no couplings with upper U(N) indices we can
use to contract indices. If not for holomorphy, we could use
KTa' m‘rab' )\‘rabc

[For N = 1, this follows from U(1) symmetry, since kK, m, A
have different charges.]
41

Also, we cannot have divergent term such as mgp X KgKp
because of dimensional analysis.

[Ka] =2, [mab] =1, [Aabc] =0

Because 6k, dm, 6k are linear in the couplings, they can be
computed in perturbation theory. But all loop diagrams have
at least 2 powers of the couplings.

Lint = )\abcd)alﬂblllc + h.c.
2.

= CKI le C)\ = 0
= 0K, 6m, oA =0 QED

b bac 2
Ka+ Mab®” + Aaqpcd™ ¢

This is a symmetry argument
= valid beyond perturbation theory.

42

The coefficient 6Z is nonzero:
6Z% = cz AN\ pgIn A+ 0O\
y\,_J

1 ~ (ATA)? by U(N) invariance
Cz=-—
4T

6Z cannot depend on k or m by dimensional analysis.

Treat A dependence using standard renormalization theory.

For simplicity, focus on the case of one chiral superfield ¢:
L= Jd“e 3T

+ fdze (k®+3m®? + 3A83) +h.c.

43

Cancel A dependence in the 1PI effective action by adding a
counterterm to the Lagrangian:

A
ALct = fd“e |:—Cz)\T)\ In—+0(\%)| &'®
]

This eliminates the dependence on A, at the price of intro-
ducing dependence on the renormalization scale u.

Renormalized Lagrangian:

;C = ;CR + Aﬁct
LR = Jd“GZR(u)th@
+ sze (k& +3ma2+1183) +h.c.

d
Heo InZr = —czATA+ O(\%) wavefunction RG equation
u

44




Define canonically normalized fields
&= [Zr(W)] V%
Note Zr ~ 1 + AtA # chiral superfield

= & is a chiral superfield only in the case where A is a
constant (independent of x, 6, 6).

For this case, we can write
L= f 06T
+ sze [Kr(u)® + 3mr(u)®2 + 3Ar(L)E3] +h.c.
kr(U) = [Zr()]~ Y2k

mg(u) = [Zr(u)]™tm
AR(W) = [Zr(L)]73/2A

45

We see that the physical couplings are multiplicatively renor-
malized:

9 r= ~LepAZg 4+ OO

'ud/JKR_ 5CZARKR ( R)

—dm = —czA2mr+0(\%) (AR = real)
udu R= —CZARMR R R=

d
Ho = —3czA2+0(A)

One implication of this is that if a superpotential coupling
is set to zero at some scale, it remains zero at all scales,
whether or not there is an enhanced symmetry.
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SUSY Gauge Theory

Guiding princple: gauge invariance

Suppose ¢, ¢ are components of a chiral superfield & with
charge g under a U(1) gauge group:

Ya(x) — 9% y4(x) Pa(x) — e 99Xy (x)
a(x) = gauge transformation parameter
g = charge (e.g. £1)

Generalize to superspace:

Transformed superfield = chiral = Q = chiral superfield

47

Kinetic term is not invariant:
f d*0&Td — Jd“e ed9(Q+0" gty

(Qf = —Q = Q = independent of x.)

Make kinetic term gauge invariant by introducing a real
superfield V transforming as

[V-—»V—%(Q+QT)] vt=v

= Jd“e $1e29V$ = gauge invariant

48




Define components by projection:

~

-
C=V|
Xa =DqaV/|

B = D?V|

i
—_ _mMABrm. —
AH = 2 [D&, Dg]V| AL =A,
1 n2
)\(X - _ZD DaVI

D=i{D2 D?}V| Dt =D
32 ’ -

. J

Compute gauge transformation of these components.
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Define components of Q:
w+ ia=Q| w, 6 =real
Na = DaQ|
E = D2Q)|
Gauge transformation:

6C=-3(Q+QN=-w

8Xa =Da[-3(Q+QN]| = -3Na

{_ n—
SAH = Za““ﬁodoﬁ [-3@+ah]|+h.c.
= oHa «—— conventional gauge transformation!

1_2 1
Aa==7D Da[-3(Q+QN]|=0

50

To understand 6A, and A4, note that
DaDp(Q+ Q") = DgDpQ

= {Dg, Dg}Q
= 2i0540,0
D DaDp(Q+ Q) = 2i0%;0,0°Q =0
Summarize:
5C=-w SXa=—3Na  6B=E
5Ay =30  SAg=0 §D =0

We can use gauge freedom in w, Nq, E to fix
C=0 Xa=0 B=0

(Wess-Zumino gauge)

51

In Wess-Zumino gauge, the gauge-invariant kinetic term is

Jd46 ®Te?9V® = DH¢'D ¢ + ytich D,y + FTF
~V2q (¢"Ag +h.c.) +qoteD
where

Du¢ = (o — iqAL)® Duy = (0 — gAY

The form of the kinetic terms is dictated by the residual
gauge invariance

¢ — eiq0{¢ ‘p — eiqaw F e[qu
We see that A, is a conventional gauge field.

[A]=1 [A1=3 [D] =2
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Ay = gauge field
A = propagating spin % field

= superpartner of gauge particle
D = auxiliary field

We can get conventional form of the Lagrangian by rescaling
V — gV, where g is the gauge coupling:

( )
Jd“e ®1e299V¢ = DH¢'D ¢ + YTic" Dy + FTF
~v/2qg (¢"™Aa” +h.c.)
+qg9T¢D

Du¢ = (0, —iqgAu)¢ Duy =8y —iqgAY
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To write gauge kinetic term, use superfield whose lowest
component is Aq4:

1_
[Wa = —ZDZDO,V] = gauge invariant

DgWa =0 i.e. Wy = chiral
W4 has nothing to do with superpotential W (sorry!)
[Wal =%

= we can write dimension-4 gauge- and SUSY-invariant term
1 {
sze WaWa = —EFIJVFIJV + ZequTvaFpT

- 2AtigHa A + D?
Fuv == apAV - avA”

54

(1 e
ﬁgauge= d 9 4_92— 3211:2 w Wa+hc
1 v © VoT

1 1
+—Atiotaun + ﬁDZ
g g

g = gauge coupling
eHYPTF, Fpr = total derivative
© =vacuum angle

O term is a total derivative, and does not give any observ-
able effects for a U(1) gauge theory.

It plays an important role in non-abelian gauge theories.
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To get canonically normalized kinetic terms, write
(neglecting © term)

( )

Egauge = sze %WaWa + h.C.

1 _
=~ P Fu + Aticha A + 3D?

. J

1_
Wy = —ZDzoav

56




D-term Potential

The component field D appears quadratically in £ and with-
out derivatives. It is therefore an auxiliary field and can be
integrated out exactly.

Consider a general theory with N chiral superfields and one
U(1) gauge group:
$2 — 9902 pa a=1,...,N

We have rescaled V — gV so that gauge fields are canoni-
cally normalized.
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L= Jd“e D 812990V g0
a
+ sze%wawa +h.c.
+Jd29 W(®) + h.c.
=gD ) qad!¢° + 3D? + independent of D
a
=1 (D +99a9197)° - 397 (Z qa¢2¢“)2 o

Integrating out D generates potential

2
[VD =39° (Z qa¢2¢°) ]
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Integrating out D is equivalent to imposing its equation of
motion

D= g; qadi o,

We can therefore write the D-term potential as
Vr = 2D?

Note that Vp > 0, and unbroken SUSY requires

(D)y=0
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Exercise: Consider SUSY QED, a U(1) SUSY gauge theory
with 2 chiral superfields &1 with gauge charge +1.

The superpotential is

W=mo&,d_
Work out the scalar potential for this model.
Show that the only minimum of the potential is at

(¢+) =(¢-)=0.

Exercise: Consider the same theory with the addition of a
chiral superfield S that is neutral under the gauge group.

The superpotential is
K
W=ASd,d_+ §53

Show that this theory has a minimum of the potential for any

value of (S).
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Non-Abelian Gauge Theory

The formulation of SUSY non-Abelian gauge theory follows
the same steps as Abelian gauge theory, with some techni-
cal complications.

® = chiral superfield in fundamental representation
of SU(N) gauge group

ab=1,...,N

(Ta)% = SU(N) generator
A=1,...,N>-1

tr(TaTg) = 3648

&9 — (eQATA)abq:’b

Kinetic term is not gauge invariant:

fd49 (I)T(P — fd49 q)TeQ;TA eQATAcI)

6l

Introduce one gauge superfield for each gauge generator:
V =VaTa VIi=Va

Invariant kinetic term:
fd“e éTe?® = gauge invariant

e2V e—QTezve—Q Q=QxTa

=> VAHVA—%(QA+Q;)+"'
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To define components with simple gauge transformation
properties, note that

— — T _of -
e=2VDge?V — eQe2Ve p, (e o2V e0
=e?%(e72VDye?V)e ™ + eDye
Looks like spinor version of
Al—l — eieATAAue—ieATA + eieATA aue_ieATA
Define component fields

i

AH = g5“"5[)(-,(e—2VDO{eZV)| +h.c.
1_

)\O{ — _ZDZ(e—ZVDanV)l

1 _
D= aD"Dz(e—z‘/Do,ez‘/)| +h.c.
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Other components vanish in Wess-Zumino gauge.

Work out gauge invariant kinetic term in terms of component
fields:

fd“e oTe?V®d = DH¢'D ¢ + YTic" Dy + FTF

+ V200 Taral + h.C.) + Dad Tad

Du¢ = au¢ - iAuATA(P
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To write gauge kinetic term, note that
52(6_2VD0(62V) — eQEZ(G—ZVDanV)e—Q

+ e D?Dgye™

N—_————

x d,Dse™ =0

1_
[Wa = _§D2(e-2VDae2V)] = chiral superfield

Wa — eQ Wae_Q

Wq =WaaTa
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Write invariant Lagrangian:

5 1 I[C] o
L=1d0 4_92_321'[2 WAWaA‘I‘h.C.

+ fd494>Te2VATA<I>

i
g2t P~ g FuaaFon
1., 1
+ ?)\Ala (DIJ)\)A + z—gzDADA
+DH¢™Dyd + ¢Tic" Dy + FIF + Dad Tag
(DpuA)a = duAa + fascAusAc [Ta, Te]l = ifascTc
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Integrate out auxiliary fields Da:

= | VWp= g;(; ¢TTA¢)2

If there are chiral superfields &, i=1,...,n, we have

Exercise: Consider SU(N) SUSY QCD with one flavor. This is
the theory of two chiral superfields Q and @ transforming in
the fundamental and antifundamental representation.

Ta = generators of fundamental representation

—TX = generators of antifundamental representation

Write the gauge invariant kinetic term for Q and @ and work

out the D-term potential.
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