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The Landscape of Particles

Any excitation with an energy between the Hubble scale to the Planck 
scale today is a particle and can be described by Quantum Field 

theory

10-43 GeV 1019 GeV102 GeV 

(SM)

Standard model emerges from the electroweak scale ~ 100 GeV

We know there must be new physics somewhere - standard model 
cannot explain observed facts about the universe such as dark matter 

or baryogenesis (in addition to other theoretical worries such as the 
hierarchy problem)

Where is this new physics? How can we glimpse them?  
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- in particular, broken gauge and global symmetries 
It is not unreasonable to think that there might be other global 
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The Landscape of Particles

10-43 GeV 1019 GeV102 GeV 

(SM)
We see that the standard model itself has a lot of symmetry structures 

- in particular, broken gauge and global symmetries 
It is not unreasonable to think that there might be other global 

symmetries at some high scale. These symmetries may also be broken 
spontaneously at some high scale fa. If so, what are the signatures?

fa

When a global symmetry is broken, by Goldstone’s theorem, there 
should be a Goldstone boson associated with it. If the global 

symmetry is exact, this Goldstone boson must be massless. If the 
symmetry is broken weakly, the Goldstone boson will acquire a mass 

proportional to this breaking of the global symmetry. 

Goldstone bosons that acquire such a small mass are called 
Axions or Axion-like-Particles 

Good idea to go after them - since they emerge from such a 
general initial context
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This is just some bad nomenclature in the field. As we will see 
in these lectures, strong dynamics from QCD can give mass 
to a specific kind of goldstone boson. That goldstone boson 

is called the axion or the QCD axion. In these lectures, we 
denote the QCD axion by the letter a.
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Axions and Axion-like-Particles
What is the difference between an “axion” and an “axion-like-

particle”?
This is just some bad nomenclature in the field. As we will see 
in these lectures, strong dynamics from QCD can give mass 
to a specific kind of goldstone boson. That goldstone boson 

is called the axion or the QCD axion. In these lectures, we 
denote the QCD axion by the letter a.

There are goldstone bosons whose mass is unaffected by 
QCD - these get mass from sources that we don’t know about. 

Such goldstone bosons are called Axion-like-Particles. In 
these lectures, we refer to them by the letter φ. 

All statements I make about axion-like-particles will also apply 
to the axion. Statements I make about the axion are specific to 

it because they rely on properties of QCD



Outline

1. The Past
(historical motivation/strong CP problem)

2. The Present
(axion solution and phenomenology, constraints and 

detection)

3. The Future
(new detection techniques and theoretical applications)



Strong Dynamics and Quantum Mechanics
Historically, axions were introduced not as some generic way in which 
broken symmetries could interact with the standard model - instead, 
they were invented to address a specific problem in QCD called the 

strong CP problem

We will pursue this historical route - it has the virtue of introducing new 
phenomena, providing an even stronger motivation for the axion.



Strong Dynamics and Quantum Mechanics
Historically, axions were introduced not as some generic way in which 
broken symmetries could interact with the standard model - instead, 
they were invented to address a specific problem in QCD called the 

strong CP problem

We will pursue this historical route - it has the virtue of introducing new 
phenomena, providing an even stronger motivation for the axion.

To that end, let us consider the U(1) electromagnetic gauge theory. 
Following Wilson, the Lagrangian should contain all operators that do 

not violate symmetries
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Why do we never discuss the term proportional to θ?

Convince yourself that this term is E.B, where E is the electric field and B is 
the magnetic field
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Strong Dynamics and Quantum Mechanics

Why do we never discuss the term proportional to θ?

Convince yourself that this term is E.B, where E is the electric field and B is 
the magnetic field

For the term to have effects, it must contribute to the action S which is the 
integral of the Lagrangian

S =

Z
d

4
xL �

Z
d

4
x✓Fµ⌫ F̃

µ⌫ =

Z
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4
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Write ~E = r�, integrate by parts
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| {z }
zero

A pure surface term - except when there are magnetic monopoles
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A pure surface term - except when there are magnetic monopoles

This term does not contribute to the classical equations of motion - for 
these, we take the action, fix the initial and final values of the field and find 
the path of minimum action that takes you from the initial field value to the 

final field value

For a class of paths, the surface terms make a constant contribution and 
are thus unaffected by the variation - they do not affect the minima of the 

action
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A pure surface term - except when there are magnetic monopoles

This term does not contribute to the classical equations of motion - for 
these, we take the action, fix the initial and final values of the field and find 
the path of minimum action that takes you from the initial field value to the 

final field value

For a class of paths, the surface terms make a constant contribution and 
are thus unaffected by the variation - they do not affect the minima of the 

action

What about quantum mechanically?
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ẋ

2

2
� V (x)

Let V(x) be a potential with just one minimum

V(x)



Surface Terms in Quantum Mechanics
Before considering field theory, let us play with one particle quantum 

mechanics
To that end, consider the Lagrangian of a particle undergoing 1D motion 

along a line in some potential

L =
ẋ
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Surface Terms in Quantum Mechanics
Before considering field theory, let us play with one particle quantum 

mechanics
To that end, consider the Lagrangian of a particle undergoing 1D motion 

along a line in some potential

L =
ẋ

2

2
� V (x)

Let V(x) be a potential with just one minimum

V(x)

To this Lagrangian, let us now add a new term

L =
ẋ

2

2
� V (x) + ✓ẋ

How does the ✓ term a↵ect physics?

No e↵ect on classical physics: @t

✓
@L
@ẋ

◆
� @L

@x

= 0 =) ẍ+

@V

@x

= 0

S � ✓

Z
dtẋ = ✓ (xf � xi) . A constant contribution to all paths - doesn’t a↵ect minima



Surface Terms in Quantum Mechanics

V(x)

L =
ẋ

2

2
� V (x) + ✓ẋ

The θ term has no effects on classical physics. What about quantum 
mechanically? In particular, does it affect the spectrum of the system?

Calculate Hamiltonian

Hamiltonian doesn’t depend on θ - the wave functions are all 
set by the potential V(x) and the kinetic energy piece. By 

explicit calculation, one can show that θ is irrelevant

p =
@L
@ẋ

=) p = ẋ+ ✓ =) H = pẋ� L =
ẋ2

2
+ V (x)

Evident also from path integral - depends only on endpoints 
and so gives same value for all paths



Surface Terms in Quantum Mechanics

V(x)

L =
ẋ

2

2
� V (x) + ✓ẋ

The θ term has no effects on classical physics. What about quantum 
mechanically? In particular, does it affect the spectrum of the system?

Is this always true?

Calculate Hamiltonian

Hamiltonian doesn’t depend on θ - the wave functions are all 
set by the potential V(x) and the kinetic energy piece. By 

explicit calculation, one can show that θ is irrelevant

p =
@L
@ẋ

=) p = ẋ+ ✓ =) H = pẋ� L =
ẋ2

2
+ V (x)

Evident also from path integral - depends only on endpoints 
and so gives same value for all paths



Surface Terms in Quantum Mechanics

Instead of a particle on a 1D line, consider a pendulum swinging 
under gravity - assume that the pendulum is suspended from a rigid 

rod so it can rotate around in a full circle

~g

This pendulum rotates about its 
pivot - its motion can be 

characterized by the angle φ 
subtended by it as it rotates. 
Alternately, we can view it as 

motion along the 1D x co-ordinate, 
with the points x and x + 2 π R 

identified

R
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Surface Terms in Quantum Mechanics
Instead of a particle on a 1D line, consider a pendulum swinging 

under gravity - assume that the pendulum is suspended from a rigid 
rod so it can rotate around in a full circle

~g

R
L =

ẋ

2

2
� V (x) + ✓ẋ

How does the θ term affect this Lagrangian? 

First of all, what does the potential even look like?

This is just the potential of the pendulum and it is periodic in x

Again, classically, the θ term has 
no effect - what about quantum 

mechanically?

x x + 2 π R



Surface Terms in Quantum Mechanics
Rigid Pendulum swinging under gravity

~g

R

L =
ẋ

2

2
� V (x) + ✓ẋ

What are the quantum mechanical effects of θ?
Unlike the previous potential which was basically a particle in a box, 

the eigenstates of this potential have interesting new features. For one, 
there is quantum tunneling - the bob tunnels through a full rotation 
going to the top of the pendulum (the potential barrier) and then 

dropping down



Surface Terms in Quantum Mechanics
Rigid Pendulum swinging under gravity

~g

R

L =
ẋ

2

2
� V (x) + ✓ẋ

What are the quantum mechanical effects of θ?
Unlike the previous potential which was basically a particle in a box, 

the eigenstates of this potential have interesting new features. For one, 
there is quantum tunneling - the bob tunnels through a full rotation 
going to the top of the pendulum (the potential barrier) and then 

dropping down
The ground state is a super-position of states localized at various 

minima - and the eigen-energies are corrected by tunneling 
amplitudes 



Surface Terms in Quantum Mechanics
Rigid Pendulum swinging under gravity

~g

R

L =
ẋ

2

2
� V (x) + ✓ẋ

What are the quantum mechanical effects of θ?
Before we get to θ, let us understand tunneling - in particular, how do 

we go about calculating these tunneling amplitudes? 
One could of course use standard tricks like the WKB approximation 
or the treatment of Bloch-waves in condensed matter systems where 

periodic potentials are common. 



Surface Terms in Quantum Mechanics
Rigid Pendulum swinging under gravity

~g

R

L =
ẋ

2

2
� V (x) + ✓ẋ

What are the quantum mechanical effects of θ?
Before we get to θ, let us understand tunneling - in particular, how do 

we go about calculating these tunneling amplitudes? 
One could of course use standard tricks like the WKB approximation 
or the treatment of Bloch-waves in condensed matter systems where 

periodic potentials are common. 
Instead, we will try a new kind of approximation that is most suited to 
finding just the energy of the ground state - this is unwieldy for this 

problem but can be generalized easily to field theory



Ground State Energy Calculation
Given a Hamiltonian H, what technique can we use to obtain 

its ground state energy (approximately)?
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Consider eigenstates of position |xi>, |xf>

Try to calculate <xf| e-HT |xi>, in the limit that T is very large
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Ground State Energy Calculation
Given a Hamiltonian H, what technique can we use to obtain 

its ground state energy (approximately)?

Consider eigenstates of position |xi>, |xf>

Try to calculate <xf| e-HT |xi>, in the limit that T is very large

hxf |e�HT |xii =
X

n,m

hxf |nihn|e�HT |mihm|xii =
X

n

hxf |nie�EnT hn|xii

For large enough T, <xf| e-HT |xi> is dominated by the ground 
state

hxf |e�HT |xii u hxf |0ie�E0T h0|xii for large enough T

This is good, but not yet sufficient since we don't know the 
ground state wave function. 



Ground State Energy Calculation
Given a Hamiltonian H, what technique can we use to obtain 

its ground state energy (approximately)?

For large enough T, <xf| e-HT |xi> is dominated by the ground 
state

Using Feynman’s path integral approach

That is, we can draw all paths connecting xi to xf, evaluate the 
action on them and then perform the path integral. If this path 

integral can be approximated, then we have evaluated the 
right hand side. As we have seen, the left hand side is 

dominated by the ground state energy - so if the right hand 
side can be estimated, we are done

hxf |e�HT |xii = N

Z
d�e

�SE [�]



Ground State Energy Calculation
For large enough T, <xf| e-HT |xi> is dominated by the ground 

state

Of course the action that appears here is the Euclidean action 
since the operator on the left is not the unitary Hamiltonian 
evolution operator but instead its analytic continuation into 

imaginary time: t -> i τ

hxf |e�HT |xii = N

Z
d�e

�SE [�]

What is this Euclidean action SE?



Ground State Energy Calculation
For large enough T, <xf| e-HT |xi> is dominated by the ground 

state

Of course the action that appears here is the Euclidean action 
since the operator on the left is not the unitary Hamiltonian 
evolution operator but instead its analytic continuation into 

imaginary time: t -> i τ

hxf |e�HT |xii = N

Z
d�e

�SE [�]

What is this Euclidean action SE?

S =

Z
dt

✓
ẋ

2

2
� V (x) + ✓ẋ

◆

Take the usual action and analytically continue t -> i τ

SE =

Z
d⌧

✓
�
✓
ẋ

2

2
+ V (x)

◆
+ i✓ẋ

◆



Ground State Energy Calculation
For large enough T, <xf| e-HT |xi> is dominated by the ground 

state
hxf |e�HT |xii = N

Z
d�e

�SE [�]

SE =

Z
d⌧

✓
�
✓
ẋ

2

2
+ V (x)

◆
+ i✓ẋ

◆

We see that the θ term enters here as phase - so it could have 
new effects. Of course, we haven't said anything that 
distinguishes this problem from the 1D potential we 

considered earlier where we argued that  θ was irrelevant



Ground State Energy Calculation
For large enough T, <xf| e-HT |xi> is dominated by the ground 

state
hxf |e�HT |xii = N

Z
d�e

�SE [�]

SE =

Z
d⌧

✓
�
✓
ẋ

2

2
+ V (x)

◆
+ i✓ẋ

◆

We see that the θ term enters here as phase - so it could have 
new effects. Of course, we haven't said anything that 
distinguishes this problem from the 1D potential we 

considered earlier where we argued that  θ was irrelevant

Let us persist and see if we can get new effects. How do we 
calculate SE? What kind of approximations can we use?



Ground State Energy Calculation

hxf |e�HT |xii = N

Z
d�e

�SE [�]

SE =

Z
d⌧

✓
�
✓
ẋ

2

2
+ V (x)

◆
+ i✓ẋ

◆

Clearly, paths of minimum Euclidean action dominate this 
integral - of course, the exact paths of minimum action form a 
set of zero measure and do not contribute to the integral. But 
paths near such minima form a set of non-zero measure and 

dominate this integral

What are the paths that minimize the Euclidean Action?

We know the answer to this question - these are simply given 
by the classical trajectory taken by a particle to go from xi to xf. 

Except, the particle moves in a potential -V(x)



Ground State Energy Calculation
hxf |e�HT |xii = N

Z
d�e

�SE [�]

x x + 2 π R

Dominated by paths near 
paths of minimum action. 
Paths of minimum action 

are the classical 
trajectories of a particle 

that goes from xi to xf in a 
potential -V

SE =

Z
d⌧

✓
�
✓
ẋ

2

2
+ V (x)

◆
+ i✓ẋ

◆

Note, we can take xf = xi - this does not change any of our 
approximations. So we are simply asking what are the 

classical paths that a particle starting at xi can take so that it 
comes back to xi while moving in a potential -V



Particle in a Box 

Ground State Energy Calculation

Dominated by paths near paths of minimum action. Paths of 
minimum action are the classical trajectories of a particle that goes 

from xi to xf in a potential -V

SE =

Z
d⌧

✓
�
✓
ẋ

2

2
+ V (x)

◆
+ i✓ẋ

◆
hxi|e�HT |xii = N

Z
d�e

�S[�]

Now we can see a difference between some generic 1D potential 
we considered earlier and the pendulum

-V

x
x x + 2 π R

-V

x

Pendulum

Only one path 
that stays in the 

same place

Multiple paths - 
they bounce 

back and forth



Particle in a Box 

Ground State Energy Calculation

SE =

Z
d⌧

✓
�
✓
ẋ

2

2
+ V (x)

◆
+ i✓ẋ

◆
hxi|e�HT |xii = N

Z
d�e

�S[�]

-V

x x x + 2 π R

-V

x

Pendulum

Only one path that stays in the same 
place

Multiple paths - they bounce 
back and forth

These additional paths are called instantons - they correct the ground 
state energy by some exponentially small amount. This corresponds to 

tunneling - which of course was absent for the particle in a box example
Tunneling is intrinsically expected in the case of the pendulum and we 

expect it to change the energies at some exponentially suppressed way - 
this is exactly what these additional (instanton) paths do



Ground State Energy Calculation

SE =

Z
d⌧

✓
�
✓
ẋ

2

2
+ V (x)

◆
+ i✓ẋ

◆
hxi|e�HT |xii = N

Z
d�e

�S[�]

x x + 2 π R

-V

x

Pendulum

Multiple paths - they bounce 
back and forth

Instanton solutions,  characterizing 
tunneling, correct the ground state 

energy of this system

What does the θ term do to 
these instantons?

Notice that there are distinct 
classes of instantons - there are 

solutions that go around the 
circle once, others that go 

around the circle twice and so 
on. So in general, there is a 

winding number associated with 
an instanton solution.

~g

R



Ground State Energy Calculation

SE =

Z
d⌧

✓
�
✓
ẋ

2

2
+ V (x)

◆
+ i✓ẋ

◆
hxi|e�HT |xii = N

Z
d�e

�S[�]

What does the θ term do to 
these instantons?

There is a winding number 
associated with each instanton

~g

R

Now we can deform two instantons that have the same winding number into 
each other by continuously deforming them - however, we cannot smoothly 

deform instantons of different winding numbers to each other. These are 
topologically distinct solutions



Ground State Energy Calculation

SE =

Z
d⌧

✓
�
✓
ẋ

2

2
+ V (x)

◆
+ i✓ẋ

◆
hxi|e�HT |xii = N

Z
d�e

�S[�]

What does the θ term do to 
these instantons?

There is a winding number 
associated with each instanton

~g

R

Now we can deform two instantons that have the same winding number into 
each other by continuously deforming them - however, we cannot smoothly 

deform instantons of different winding numbers to each other. These are 
topologically distinct solutions

Thus

Z
d⌧ (i✓ẋ) / i✓n, where n = winding number

So θ term provides a phase telling us how to add instantons of different winding 
number together - this term is thus absolutely physical!

Such an effect was absent for the particle in a box because there were no 
instantons there



Calculation Details

SE =

Z
d⌧

✓
�
✓
ẋ

2

2
+ V (x)

◆
+ i✓ẋ

◆
hxi|e�HT |xii = N

Z
d�e

�S[�]

~g

R θ term provides a phase telling us how to 
add instantons of different winding number 

together - this term is thus absolutely 
physical!

So we see how the story works - we expect the ground state energy of the 
pendulum to be corrected by tunneling. This tunneling can be calculated by 

looking at the Euclidean path integral. 

The path integral is dominated by paths that are near the path of minimum 
action. The path of minimum action is given by the classical solution to the 

equations of motion of a particle moving along a potential -V

If there are multiple, topologically distinct instantons then the θ term becomes 
physical - it tells you how to add these instantons together



Calculation Details
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R
If there are multiple, 

topologically distinct instantons 
then the θ term becomes 

physical - it tells you how to add 
these instantons together

You can look at Coleman’s book for the details of the calculations 
- the basic idea is that once you find the classical instanton 

solutions XI, you perturb about them

How does the calculation actually work?

x (⌧) = XI (⌧) +
X

n

cnxn (⌧)

The xn are a complete set of orthonormal functions and with this ansatz one 
calculates the functional integrals

Unlike the original instanton XI these perturbations are not a set of measure zero 
and hence contribute (and in fact dominate) the path integral



Effects of θ 
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Because of tunneling, for a pendulum under gravity, the surface term θ actually 
has physical effects

After grunging through the calculations (see Coleman for details), we have the 
final answer:

E =

1

2

! + 2K cos ✓e�S0

e�S0
barrier penetration factor - proportional to the Euclidean action of instanton with winding number 1

K a complicated pre-factor that comes from functional integration



Effects of θ 

~g
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ẋ
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Because of tunneling, for a pendulum under gravity, the surface term θ actually 
has physical effects

After grunging through the calculations (see Coleman for details), we have the 
final answer:

E =

1

2

! + 2K cos ✓e�S0

e�S0
barrier penetration factor - proportional to the Euclidean action of instanton with winding number 1

K a complicated pre-factor that comes from functional integration

Key Point: θ actually changes the spectrum - this is non-perturbative



Surface Terms and Quantum Mechanics

What does all this have to do with axions? After all, we said 
axions were just goldstone bosons of some broken symmetry



Surface Terms and Quantum Mechanics

What does all this have to do with axions? After all, we said 
axions were just goldstone bosons of some broken symmetry

The point is, we were trying to see why people introduced 
axions in the first place. To that end, we began by asking why 

we never considered terms of the form: 

We said that unless there was a magnetic monopole, the third 
term was a surface term that had no effects on physics. But as 

our example with the pendulum demonstrates, these terms 
can have non-perturbative physical effects, arising from 

topology

L � �Fµ⌫F
µ⌫ + eAµ| {z }

Standard

Jµ + ✓Fµ⌫ F̃
µ⌫

| {z }
?



Surface Terms in Gauge Theories
Much like our analysis of the quantum mechanics problem, we can 

use the Euclidean path integral to calculate the ground state energy of 
a gauge theory

For now, let us just consider a gauge theory. The theory can be 
Abelian or non-Abelian. To start with, let us not put in any fermions 

charged under this gauge group. We will eventually include them, but 
let us initially ignore them for simplicity.

L � �Fµ⌫F
µ⌫ + ✓Fµ⌫ F̃

µ⌫



Surface Terms in Gauge Theories
Much like our analysis of the quantum mechanics problem, we can 

use the Euclidean path integral to calculate the ground state energy of 
a gauge theory

For now, let us just consider a gauge theory. The theory can be 
Abelian or non-Abelian. To start with, let us not put in any fermions 

charged under this gauge group. We will eventually include them, but 
let us initially ignore them for simplicity.

Given this Lagrangian,we can compute the Euclidean Path Integral: 
Z

[dA]e�SE [A]

The integral is of course performed over the vector potential A of the 
gauge theory

L � �Fµ⌫F
µ⌫ + ✓Fµ⌫ F̃

µ⌫



Surface Terms in Gauge Theories

Again, this integral will be dominated by perturbations around 
solutions to the Euclidean equations of motion

Z
[dA]e�SE [A]

The Euclidean equations of motion are of course given by a differential 
equation: 

DµF
µ⌫ = 0

To solve these equations and obtain classical solutions, we have to 
impose boundary conditions

L � �Fµ⌫F
µ⌫ + ✓Fµ⌫ F̃

µ⌫



Surface Terms in Gauge Theories

Again, this integral will be dominated by perturbations around 
solutions to the Euclidean equations of motion

Z
[dA]e�SE [A]

The Euclidean equations of motion are of course given by a differential 
equation: 

DµF
µ⌫ = 0

To solve these equations and obtain classical solutions, we have to 
impose boundary conditions

What sort of boundary conditions are appropriate?

L � �Fµ⌫F
µ⌫ + ✓Fµ⌫ F̃

µ⌫



Surface Terms in Gauge Theories
Z

[dA]e�SE [A]

DµF
µ⌫ = 0

What sort of boundary conditions are appropriate?

The action at the end of the day is some integral performed over all space. 
If this integral diverges (i.e. the solution has infinite energy), then those 

solutions do not contribute to the path integral

So we should try to find solutions to the equations of motion that have finite 
energy. These will be our instantons. Of course, as in the prior quantum 
mechanical case, the path integral will be dominated by perturbations 

about these instanton solutions



Surface Terms in Gauge Theories
Z

[dA]e�SE [A]

DµF
µ⌫ = 0

What sort of boundary conditions are appropriate?

The action at the end of the day is some integral performed over all space. 
If this integral diverges (i.e. the solution has infinite energy), then those 

solutions do not contribute to the path integral

So we should try to find solutions to the equations of motion that have finite 
energy. These will be our instantons. Of course, as in the prior quantum 
mechanical case, the path integral will be dominated by perturbations 

about these instanton solutions

For the solutions to have finite energy, the field strength (F) must vanish at 
infinity

Key Point: Vanishing of F does not imply that the potential A must 
vanish at infinity



Surface Terms in Gauge Theories
Z

[dA]e�SE [A]

DµF
µ⌫ = 0

What sort of boundary conditions are appropriate?
Need solutions where F vanishes at infinity - but vanishing of F does not 

mean that the gauge potential A needs to vanish
This means, we seek boundary conditions where the potential is pure 

gauge out at infinity. It will have non-zero field strength in a finite region and 
thus contribute as a finite energy solution to the Euclidean Path Integral

That is to say, we look for maps between the boundary of space-time (S3 if 
the space-time is R4) to the gauge group G since the gauge potential is 

simply a map from this boundary picking up values in G.

Given such a map, we can ask if it can be continuously deformed to 
another map - if so, we shouldn't count it separately, since it will be part of 
the functional integral anyway (where we  integrate over all perturbations 

around a classical solution)



Surface Terms in Gauge Theories
Z

[dA]e�SE [A]

DµF
µ⌫ = 0

What sort of boundary conditions are appropriate?
Look for maps from S3 to G - ask if these maps can be continuously 

deformed to one another
This is a math question and can be answered by talking to your friends who 
know some topology. For example, if the gauge group G is an Abelian U(1) 
(like electromagnetism), then all maps from the S3 (the boundary of R4) to 

U(1) can be continuously deformed to the identity. So there is only one 
finite energy solution to the Euclidean equations of motion which is the 

trivial one where the potential vanishes at infinity.



Surface Terms in Gauge Theories
Z

[dA]e�SE [A]

DµF
µ⌫ = 0

What sort of boundary conditions are appropriate?
Look for maps from S3 to G - ask if these maps can be continuously 

deformed to one another
This is a math question and can be answered by talking to your friends who 
know some topology. For example, if the gauge group G is an Abelian U(1) 
(like electromagnetism), then all maps from the S3 (the boundary of R4) to 

U(1) can be continuously deformed to the identity. So there is only one 
finite energy solution to the Euclidean equations of motion which is the 

trivial one where the potential vanishes at infinity.

This conclusion of course depends on the geometry of space-time. For 
example, if we lived in 1+1 dimensions, the boundary of R2 is S1. In this 

case, there are non-trivial maps from this boundary S1 into the U(1) gauge 
group, which is also S1. These maps are characterized by a winding 

number - exactly as in the case of the pendulum



Surface Terms in Gauge Theories
Z

[dA]e�SE [A]

DµF
µ⌫ = 0

What sort of boundary conditions are appropriate?

Look for maps from S3 to G - ask if these maps can be continuously 
deformed to one another

Turns out that for any SU(N), there are non-trivial maps from S3 (the 
boundary of R4) to the gauge group SU(N).

Each such map picks a boundary condition that leads to a finite energy 
solution to the Euclidean equations of motion

We characterized maps on S1 using a winding number - for these higher 
dimension maps there is something called the Pontryagin index. This index 
is an integer that performs a similar role - in particular, two maps that can 

be deformed into one another have the same index



Surface Terms in Gauge Theories
Z

[dA]e�SE [A]

DµF
µ⌫ = 0

Turns out that for any SU(N), there are non-trivial maps from S3 (the 
boundary of R4) to the gauge group SU(N).

Each such map picks a boundary condition that leads to a finite energy 
solution to the Euclidean equations of motion

These solutions are instantons of the gauge theory and much like the 
instantons in the quantum mechanical problem, they correct the ground 

state energy of the theory



Surface Terms in Gauge Theories
Z

[dA]e�SE [A]

DµF
µ⌫ = 0

Turns out that for any SU(N), there are non-trivial maps from S3 (the 
boundary of R4) to the gauge group SU(N).

Each such map picks a boundary condition that leads to a finite energy 
solution to the Euclidean equations of motion

These solutions are instantons of the gauge theory and much like the 
instantons in the quantum mechanical problem, they correct the ground 

state energy of the theory

What about the surface term θ?

What is the value of the surface term on these instanton solutions? 

L � �Fµ⌫F
µ⌫ + ✓Fµ⌫ F̃

µ⌫



Surface Terms in Gauge Theories

What is the value of the surface term on these instanton solutions? 

Can show that the surface term integrates to the Pontryagin index - a 
number that characterizes the instanton

Exactly like in the case of the pendulum under gravity, the parameter θ is a 
phase that tells us how to add different classes of instantons together
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µ⌫ + ✓Fµ⌫ F̃

µ⌫



Surface Terms in Gauge Theories

What is the value of the surface term on these instanton solutions? 

Can show that the surface term integrates to the Pontryagin index - a 
number that characterizes the instanton

Exactly like in the case of the pendulum under gravity, the parameter θ is a 
phase that tells us how to add different classes of instantons together

After a lot of grunge (follow Coleman), one can show that much like the 
case for the pendulum, the ground state energy density of the field theory 

is corrected by these instanton solutions by terms of the form

E (✓) ⇠ K cos ✓e�S0

Here K is an awful functional determinant and S0 is the suppression factor 
associated with an instanton of index 1.  θ has become physical!

L � �Fµ⌫F
µ⌫ + ✓Fµ⌫ F̃

µ⌫



Summary of Surface Term in Gauge Theories

Much like our initial quantum mechanical pendulum, the ground state 
energy of this field theory can be calculated using the Euclidean path 

integral

This integral is dominated by finite energy solutions of the Euclidean field 
equations - these finite energy solutions are characterized by the fact that 

they have vanishing field strength at infinity and are thus pure gauge

To understand these solutions, we look at maps from the boundary of the 
space-time to the gauge group. Depending upon the topology of the 

space-time, these maps may or may not be trivial. For example, in 1+1 
dimensions, there are non-trivial maps from the boundary S1 to U(1), while 
no such maps exist from the boundary S3 (of R4) to U(1). There are non-

trivial maps from S3 to SU(N) 

When there are such non-trivial maps, the surface term θ gives a 
phase that determines how the different instanton solutions should be 

added together. The term becomes physical!

L � �Fµ⌫F
µ⌫ + ✓Fµ⌫ F̃

µ⌫



Since we live  in R4, there are no interesting instantons for U(1) 
electromagnetism. However, there are non-trivial instantons for SU(2) and 

SU(3) 

Summary of Surface Term in Gauge Theories

Going through the calculation of the instanton contributions (follow 
Coleman again), one can show that the exponential suppression Exp[-S0] 

associated with the instanton is Exp[-8π2/g2] where g is the gauge coupling

In the standard model, for the SU(2) electroweak gauge group, g2 << 1. So 
its instanton corrections are negligible. For QCD, g3 hits strong coupling 

and hence the exponential suppression disappears

So the question is, what are the effects of θ on QCD? 

L � �Gµ⌫G
µ⌫ + ✓Gµ⌫G̃

µ⌫



Next Class: Strong CP problem, Axion 
solution and its phenomenology


