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Tower of gravity EFTs:  

Independent EFTs with distinct expansion parameter coincide in PN limit.
UV divergence in                 corresponds to IR effect in EFTi+1 EFTi

Full theory:
Rµ⌫ = 0

Finite size
S = SEH + Spp

2-body
(“NRGR”)

⌘0 = rs/r(= rg/r,BH)

⌘1 = rg/r(= v2,NR case)

⌘2 = r/�(= v,NR case)

⌘3 = rg/�(= v3, NR case)

Radiation
(multipole+non-
linear GR)

UV

UV

UV IR matching

IR matching

IR matching



EFT1I:   2-body bound state
This is a theory of 2 pt non-relativistic particles, interacting gravitationally 
and emitting radiation:
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where now,

ignoring spin, finite size, etc.

S = SEH + Spp



The gravitational “Wilson line”

W = exp i�[
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generates all the observables of the (classical) binary system.  
Diagrammatically:

BH1

BH2

t

W = · · ·+ + · · ·

h̄µ⌫
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where we split up the metric into a background field and a “fluctuating 
part”: gµ⌫ = ⌘µ⌫ + h̄µ⌫ + hµ⌫

background

and integrate out fluctuations.

fluctuation

= e
P
(BH irreducible diagrams)



For example, 

�[h̄ = 0, xa] =

Z
dtL(xa(t), ẋa(t)) =

generates the equations of motion for the BH trajectories

The linear term in the  background defines an effective energy-
momentum tensor:

two-body 
Lagrangian

�[h̄ =, xa] = · · ·+ 1

2mPl

Z
d

4
xT

µ⌫(x)h̄µ⌫ + · · ·

which can be used to compute radiation at infinity

@µT
µ⌫(x) = 0 (Ward id. for diff 

invariance)
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In particular, with standard in/out (Feynman) b.c.’s, graviton emission amplitude is 
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yield time-averaged energy and momentum emission rates:

Using in/in boundary conditions (as in cosmology) gives instantaneous 
observables, e.g. radiation field at infinity: 
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which yields the time-dep. waveform seen in the detector.



gµ⌫ = ⌘µ⌫ + hµ⌫/mPl

w/ e.g 
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To compute the generating function        one could use standard covariant 
Feynman rules obtained by expanding       

W

However, these Feynman rules are not optimal optimal for the NR limit  v ⌧ 1
The diagrams don’t have manifest power counting in the exp. parameter:

⇠ v?⇠ v2 + v4 + · · ·

(NOT A
PROPAGATOR!)==



“radiation”: (E � v/r, ⌥p � v/r)

“potential”: (E � 0, ⌃p � 1/r)

The radiation mode can be regarded as long wavelength background field 
in which potential gravitons propagate

The problem is that the diagrams involve momentum integrals over all 
momentum regions.   However, for NR kinematics, two momentum space 
configurations dominate:

The solution to this problem is well known from NRQED/NRQCD and 
HQET.  Decompose graviton into distinct momentum modes and “pull 
out” short scales:
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In addition, need to multipole expand the couplings of the radiation mode to the particles 
and to the potentials.   This yields an effective Lagrangian with manifest power counting in 
velocity:

By connecting vertices together, generate the 2-body potentials and the 
interactions of matter with radiation.   Drop quantum corrections

Radiation-potential 
interaction
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Leading order:   
Newton 
(1687)

Next-to-leading (1PN):   Einstein-Infeld 
Hoffman Lagrangian (1938)
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2PN  (1981-2002):     Some of the diagrams are (Gilmore+Ross, PRD 2008)

(simplification of PT via field redefs:  
B. Kol+M. Smolkin, 2007-2008. )

reducible to one-loop integrals via 
IBP:Z

dd�1k

(2⇡)d�1
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3PN (1998-2003):    Recently computed by Sturani+Foffa (2011).   Computer 
generated Feynman diagrams plus table of standard Feynman integrals.

Partial progress in EFT computation of 4PN potentials has also been 
made.  See Sturani + Foffa, PRD 2013.

relevant topologies:

# topologies vs. 
PN order

# of diagrams/topology/
fixed PN order.



Inclusion of BH spin into the EFT: (R. Porto, PRD 2007)

“Hyperfine” (Spin-spin) interactions:     (Porto+Rothstein, PRL 2008)

        orbit couplings:     (Porto+Rothstein, PRD 2008)⇥S2�

=1 for BH



Tµ⇥ = +
h̄µ⇥

+

One graviton sector:  radiation couplings
Integrating out potential modes gives the couplings of 2-body system to 
radiation:

h̄µ⇥ +

· · · h̄µ⇥

h̄µ⇥

+

v0 v2

(1st graph=LO. Last three graphs are NLO).

(WG+A. Ross, PRD 
2010)



The resulting action consists of a set of multipole moments coupled to the 
worldline of composite object.   In the CM frame,
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For example, the quadrupole moment to NLO (Will+Wagoner, 1970’s)
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O(Sa)O(S2
a)

O(Sa · Sb)

(Porto+Ross+Rothstein 2011)
This formalism has been used recently to compute spin-induced moments 
at 3PN order 



EFTIII:   Radiation
This is a field theory of radiation coupled to a point object with multipole 
moments.   Most general diff. invariant action (Elegant coset formulation:   
S. Endlich, R. Penco,…,2014)

(Double expansion:           
                                                    )

(WG+Ross, PRD 2010)
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µ

eµa=1,2,3

x

µ(�)

The time evolution of the moments arises from short dist. 
(potentials) as well as radiative corrections (radiation reaction).

Can regard the moments as time-dependent Wilson 
coefficients (coupling constants).   Radiative corrections in the 
EFT will generate RG flows for them.
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Ṗ 0 =
GN

5

*✓
d3

dt3
Iij(t)

◆2
+

+
16GN

45

*✓
d3

dt3
J ij(t)

◆2
+

+
GN

189

*✓
d4

dt4
Iijk(t)

◆2
+

+ · · ·

Can use this theory to compute observables at infinity, even if the short 
distance time evolution of the moments is not known.   For example, the 
graviton emission amplitude involving the 1st three moments:

Determines the time averaged energy loss rate of the composite system:



(To do calculations like these, need the sum over graviton polarizations

see eg Weinberg’s GR textbook.



Focus on the             channel.   The amplitude to second order is

UV and IR divergences in radiation

Iij

iA(k) = + +

+ + · · ·

Non-linear interaction of emitted gravitons with multipole moments 
introduces both UV and IR divergences.
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Leading IR divergence:

(n ⇥ �1)

Can be reduced to to scalar Feynman integrals of 
the form 

n = �1Note that for                  this has an infrared  divergence.  
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Physically, this is the familiar “Coulomb” singularity:    nearly on-shell graviton 
interacts with the long range         potential of the composite object.1/r
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The complete result is 

Note that to order                         , the IR singularities drop from GNm|k| � v3 |A|2
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Subleading IR divergences:

The following order              diagram is also IR divergent by power counting⌘23 ⇠ v6
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but one can check that all IR divergences cancel out of physical quantities, up 
to higher order terms in perturbation theory.  E.g:
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We also showed that the leading                poles at each order, from the 
diagrams

1/✏IR

The handling of IR divergences in  the waveform                                has 
been recently addressed.      (Porto, Ross, Rothstein, arXiv1203.2962).

hTT
ij (t,x ! 1)

sum up to a complex phase in the emission amplitude,
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 so poles drop out of physical predictions.
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Leading UV divergences
The following graphs at order

are logarithmically UV divergent.  

 This reflects the interaction of nearly on-shell outgoing graviton with the          
potential of the two-body system.   Eg.
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 The full result at second order in the expansion is then
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RG flows
UV divergences correspond to singularities in the multipole expansion, 
first at             .    In the EFT, these divergences are absorbed into the 
Wilson coefficients, i.e, renormalization of the multipole moments
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This can be used to predict the pattern of logs                         in 
quadrupole radiation:
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For circular orbits, our prediction is 
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This was confirmed recently by BH perturbation theory (R. Fujita, arXiv:1211.5535)
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This result can be extended to the            moments, using the methods 
developed in Ross, arXiv:1202.4750.  The general pattern of logs is

` > 2

Sommerfeld
factor

Fixes the series of logs

Other recent results in the radiation sector:  

Radiation reaction at 3.5PN (1993-1995) (Galley+Leibovich, 2012).  4 
PN in progress (2011 Wang et al).

3PN Flux and 2.5PN waveform for spin-induced moments 
(Porto, Ross, Rothstein, 2010,2012).

Hereditary terms in radiation reaction at 4PN  (Foffa+Sturani, 
2011) (Blanchet et al 2010)  

Maybe useful for the construction of phenomenological templates…


