Dark Matter Simulations for the Large-Scale Structure of the Universe

Raul E. Angulo

Advanced Workshop on Cosmological Structures ICTP, Trieste Mayo 2015

Simulating structure formation in the Universe

Most of the mass in the Universe is in the form of an unknown elementary particle: the Cold Dark Matter

Properties of CDM

- → No thermal velocity
- → Only Gravity
- → Small primordial fluctuations

...but simulating trillions of micro-physical CDM particles is impossible

CDM forms a "sheet": A continuous 3D surface embedded in a 6D space

The Vlassov-Poisson Equation

$$0 = \frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \frac{\mathbf{v}}{a^2} \cdot \frac{\partial f}{\partial \mathbf{v}} - \frac{\partial f}{\partial \mathbf{x}} \frac{\partial \Phi}{\partial \mathbf{x}}$$
$$\nabla^2 \Phi = \frac{4\pi G}{a} \int f \mathrm{d}^3 v_{\mathrm{d}}$$

CDM Sheet Properties

- → phase-space is conserved along characteristics
- → It can never tear
- \rightarrow It can never intersect

Kaehler et al (2012)

Standard approach to solving the VP equation:

Montecarlo Sampling and coarse graining the CDM distribution function

Tree Algorithms Multipole decomposition

Particle-Mesh Poisson equation

An alternative approach:

Discretization of the DM fluid using phase-space element methods

A tessellation of a finite number of mesh-generating points in Lagrangian space allows to continuously map the deformation of the dark matter sheet

(Abel+ 2012, Shandarin+ 2012, Kaehler+ 2013, Hahn+ 2013, Angulo+ 2013, Hahn & Angulo 2015)

Simulations of the same region of the Universe

Hahn & Angulo 2015

See O. Hahn's talk

Exponential growth of computing power over 40 years

10 trillion particle N-body simulations are expected by 2020

Numerical simulations have been essential in the establishment of the "cosmology standard model"

They aim to bridge 13.6 billion years of nonlinear evolution

1985: The CDM model plus gravitational instability can explain qualitatively the observed universe

Davis, Efstathiou, Frenk & White 1985

1990: A cosmological constant is needed to explain the observed clustering of galaxies

Efsthathiou, Sutherland & Maddox (1990)

"We argue that the successes of the CDM Theory can be retained and the new Observation accommodated in a spatially Flat cosmology in which as much as 80% Of the critical density is provided by a Positive cosmological constant..."

Our current understanding of structure formation in the Universe stands on four key ideas:

There are fundamental open questions about each of its pillars.

These enigmas have driven multi-million dollar experiments.

The signature of departures from ΛCDM depend sensitively on:

- the detailed distribution of dark matter
- → the precise impact of dark energy on cosmic structure
- → the physics of galaxy formation

All this from gigaparsecs down to subgalactic scales

Modern simulations face new challenges in terms of their accuracy and predictive power.

Exponential growth of computing power over 40 years

10 trillion particle N-body simulations are expected by 2020

· · · · ·

The record holder: DarkSky simulations

- → 1 trillion particles
- → 10 Gpc box
- → 200,000 CPUs
- → 70 Tb RAM

Large-scale N-body simulations aim to predict:

BAO & Galaxy Clustering Abundance of Clsters Weak Gravitational Lensing Redshift-Space Distortions

- → The nonlinear state of mass
- → The velocity field
- → Abundance and properties of collapsed DM structures
- \rightarrow The places of galaxy formation

Zoom-In N-body simulations aim to predict:

Direct Detection Indirect Detection Astrophysical Probes

- → Halo density and velocity profiles
- → Substructure mass function
- → Substructure spatial distribution

Dark Matter simulations are robust and provide testable results

- Haloes are triaxial and rotate slowly.

- Halos density profile is described by an universal functional form

Accurate characterization of:

- Mass function
- clustering
- subbhalo population
- cosmic web

...as a function of cosmological Ingredients.

Is there anything left for Dark Matter simulations after 40 years of development?

18

MXXL, Angulo+ 2012

How can we optimally extract all the cosmological information encoded in the clustering of galaxies?

The challenge

- \rightarrow (Nonlinear) density field
- \rightarrow (Nonlinear) velocity field
- \rightarrow (Nonlinear, stochastic, non-local) Galaxy bias
- \rightarrow Higher order correlation functions
- \rightarrow Precise accounts of observational setups

The reward

→More accurate and robusts constrains on

- Inflation, Gravity, Dark Energy, Dark Matter
- Galaxy Formation physics

→ (Higher order, Tree loop, Renormalized, Lagrangian, Eulerian, Effective Field Theory of LSS, augmented, integrated) Perturbation theories; Halo Model; Halo Fit

N-body simulations can and should be used to directly to constraint cosmological parameters

The dark matter as a function of cosmology

- \rightarrow A grid of DMO simulations
- \rightarrow Emulators
- → Cosmology scaling

The galaxy population

N-body simulations can nowadays be used to directly constraint cosmological parameters

N-body simulations can nowadays be used to directly constraint cosmological parameters

N-body simulations can and should be used to directly to constraint cosmological parameters

The dark matter as a function of cosmology

- \rightarrow A grid of DMO simulations \rightarrow Emulators
- → Cosmology scaling

The galaxy population

- → Hydrodynamical simulations
- → Semi-analytics models
- \rightarrow Halo Ocupation distribution
- → Subhalo Abundance matching

Testing SHAM in hydrodynamical simulations

Chavez, Angulo + EAGLE team (2015, in prep)

Redshift space clustering

28

S

Can we put these two ingredients together? The dark matter as a **The galaxy population** $n = 1.16 \times 10^{-3}$ $n = 6.5 \times 10^{-3}$

Can we push this further? **3pt correlation functions in** *redshift* **space**

Different triangular configurations can be predicted to the same accuracy

 $Q(s, u, \theta) \equiv \frac{\zeta(s, u, \theta)}{\xi(r_1)\xi(r_2) + \xi(r_2)\xi(r_3) + \xi(r_3)\xi(r_1)}$ 2.0 $r_3 = 2.0$ $r_3 = 0.5$ $r_3 = 1.0$ $r_3 = 4.0$ 1.5 ÷ 1.0 15, 1.00 0.25, 0.60 0.5 0.29, 0.81 0.0 0.50, 0.70 40 20 0.80, 0.40 ∆Q[%] -20 1.0 **3.0** 2.5 2.5 3.0 1.5 2.0 2.51.5 2.0 3.0 1.5 2.0 **3.0** 1.5 2.0 2.5 r/r_3 r/r_3 r/r_3 r/r_3

Application: Main SDSS sample

Angulo, Marin & White, in prep

After BAO and RSD, future surveys will extract information from the largest cosmological scales

→ Non-Gaussianities

- → General Relativity effects
- → Neutrino Masses

A forward modelling would also make simpler to model complex observational setups

How do we optimally measure those scales?

How do we optimally measure those scales?

How do we optimally measure those scales?

Continuous v/s sparse sampling

k < 0.1 h/Mpc scales can be measured in 10% of the time k < 0.01 h/Mpc scales can be measured in 1% of the time

Hernandez-Monteagudo & Angulo (2015, in prep)

Summary

→ Modern N-body simulations are essential to address current and future challenges in cosmology. The exaflop limit and 10 trillion particle runs are expected by 2020

 \rightarrow In a formative era, simulations were essential to probe that the Universe we observed can be explained by simple initial conditions and the laws of physics

 \rightarrow In a consolidation era, simulations have provided us for very accurate predictions for the properties of structure

→ In the next era, N-body results could be used directly in cosmological analyses