Phase Space Methods for the Analysis and Simulation of CDM Dynamics

Oliver Hahn
Laboratoire Lagrange, Observatoire de la Côte d'Azur, Nice, France
(S) ()bservatoire
with Raul Angulo (CEFCA), Tom Abel (Stanford), Ralf Kaehler (SLAC)

What is Dark Matter?

microscopic
continuum limit
proton $=1 \mathrm{GeV}, \mathrm{WIMP} 100 \mathrm{GeV} ?->10^{21} / \mathrm{g}$
cold (or at most lukewarm) $\longrightarrow \quad V_{\text {thermal }} \ll V_{\text {bulk }}$
e.g. thermally produced at very early times, cooled since then
negligible cross-section

$\sigma_{D M} \ll \sigma_{e m}$
collisionless
...and also the dominant gravitating component (~80\%)
at first order, structure formation is well described by assuming all matter is dark matter

Dark Matter - properties on small scales

1D behaviour under self-gravity

Dark Matter - fluid flow

Lagrangian description, evolution of fluid element

$$
\mathbb{Q} \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{6}: \mathbf{q} \mapsto\left(\mathbf{x}_{\mathbf{q}}(t), \mathbf{v}_{\mathbf{q}}(t)\right)
$$

For DM, motion of any point \mathbf{q} depends only on gravity

$$
\left(\dot{\mathbf{x}}_{\mathbf{q}}, \dot{\mathbf{v}}_{\mathbf{q}}\right)=\left(\mathbf{v}_{\mathbf{q}},-\boldsymbol{\nabla} \phi\right)
$$

unlike hydro, no internal temperature, entropy, pressure
So the quest is to solve Poisson's equation

$$
\Delta \phi=4 \pi G \rho
$$

N-body vs. continuum approximation

The N -body approximation:

$$
i \in\{1 \ldots N\} \mapsto\left(\mathbf{x}_{i}, \mathbf{v}_{i}\right)
$$

\Rightarrow EoM are just Hamiltonian N -body eq. (method of characteristics)
for small N , density field is poorly estimated,

$$
\rho=m_{p} \sum \delta_{D}\left(x-x_{i}\right) \otimes W
$$

continuum structure is given up, but 'easy' to solve for forces
hope that as \mathbf{N}->very large numbers, approach collisionless continuum

Lagrangian elements

Define little piecewise maps:

$$
\mathbb{Q}_{i} \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{6}: \mathbf{q} \mapsto\left(\mathbf{x}_{\mathbf{q}}(t), \mathbf{v}_{\mathbf{q}}(t)\right)
$$

Describing the density field

Three dimensions

Same simulation data! (Abel, Hann, Kaehere 2012)

Problem: How to measure the bulk velocity field?

- Interpolate between neighbouring N -body particles
- "neighbouring" in phase space, not configuration space
- account for averaging over streams ("coarse-graining")

- Coarse-grained bulk velocity field:

$$
\langle\mathbf{v}\rangle \equiv \frac{\int_{\mathbb{R}^{3}} \mathbf{v} f(\mathbf{x}, \mathbf{v}) \mathrm{d}^{3} v}{\int_{\mathbb{R}^{3}} f(\mathbf{x}, \mathbf{v}) \mathrm{d}^{3} v}=\frac{\sum_{s \in \mathrm{~S}} \mathbf{v}_{s}(\mathbf{x}) \rho_{s}(\mathbf{x})}{\sum_{s \in \mathrm{~S}} \rho_{s}(\mathbf{x})}
$$

- result is discontinuous across caustics

Derivatives of the bulk velocity field

- Discontinuities make ordinary derivatives ill-defined without coarse-graining!
- Away from discontinuities: Need to explicitly evaluate action of derivative on projected field:

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot\langle\mathbf{v}\rangle & =\langle(\boldsymbol{\nabla} \log \rho) \cdot(\mathbf{v}-\langle\mathbf{v}\rangle)\rangle+\langle\boldsymbol{\nabla} \cdot \mathbf{v}\rangle \\
\boldsymbol{\nabla} \times\langle\mathbf{v}\rangle & =\langle(\boldsymbol{\nabla} \log \rho) \times(\mathbf{v}-\langle\mathbf{v}\rangle)\rangle+\langle\boldsymbol{\nabla} \times \mathbf{v}\rangle
\end{aligned}
$$

- Vorticity for std. gravity pure multi-stream phenomenon!!
- At discontinuities: Derivatives are singular, but have finite measure.
 compressive singularities at caustics

Properties of the cosmic velocity field II

Spectral properties of the cosmic velocity field I

- Faster convergence (for WDM: convergence!)
- Better small scale properties

Problems of the N -body method: WDM

Main Problem: two-body effects, directly related to force softening

Most obvious for non-CDM simulations!
(e.g. Centrella\&Melott 1983, Melott\&Shandarin 1989, Wang\&White 2007)

Improving on N -body....

N-body

$$
\dot{\mathbf{x}}_{i}=\frac{1}{m a^{2}} \mathbf{p}_{i} \quad \text { and } \quad \dot{\mathbf{p}}_{i}=-\left.m \boldsymbol{\nabla}_{x} \phi\right|_{\mathbf{x}_{i}}
$$

point-wise and Hamiltonian
need softening, no knowledge what it should be (empirical)

Lagrangian phase-space element

$$
\dot{\mathbf{x}}_{\mathbf{q}}=\mathbf{v}_{\mathbf{q}}, \quad \text { and } \quad \dot{\mathbf{v}}_{\mathbf{q}}=-\left.\nabla_{x} \phi\right|_{\mathbf{x}_{\mathbf{q}}}, \quad \text { with } \mathbf{q} \in \mathcal{Q}
$$

continuum structure (diff w.r.t. q), approx by

$$
P_{k}=\left\{\pi(\mathbf{q}) \mid \pi(\mathbf{q})=\sum_{\alpha, \beta, \gamma=0}^{k} a_{\alpha \beta \gamma} q_{0}^{\alpha} q_{1}^{\beta} q_{2}^{\gamma}\right\}
$$

-> EoM for polynomial coefficients

$$
\dot{\mathbf{x}}_{\alpha \beta \gamma}=\mathbf{v}_{\alpha \beta \gamma}, \quad \dot{\mathbf{v}}_{\alpha \beta \gamma}=-J^{-1} \mathbf{f}_{\alpha \beta \gamma}
$$

explicit truncation error:

$$
\Delta \dot{\mathbf{v}}=-J^{-1} \sum_{\alpha, \beta, \gamma=k+1}^{\infty} \mathbf{f}_{\alpha \beta \gamma} q_{0}^{\alpha} q_{1}^{\beta} q_{2}^{\gamma}
$$

Using tets for simulations: 300eV toy WDM problem

fixed mass resolution, varying force resolution:

force res. features become sharper fragmentation appears
sheet tesselation based method cures artificial fragmentation

First determination of WDM halo mass function!

Limitations - diffusion/loss of energy cons.

Mixing - (phase or chaotic)

need increasingly larger number of elements to trace the sheet surface

Need adaptive refinement

adaptive refinement:

a. element is flagged for refinement

b. positions and velocities are determined at mid-points

c. new elements are created using the mid-point values
approximate element mass distribution by recursively deposited 'mass carrier particles' (these are not active, i.e. no degrees of freedom)

Hahn \& Angulo 2015

refinement + higher order!

Orbit test

refinement

Self-gravitating tests 1D

32^{3} particle plane wave, axis aligned

32^{3} particle plane wave, oblique

let's go cosmological

Conclusions

- Lagrangian elements can give new insights into existing simulations (density/velocity fields, multi-stream analysis,...)
- Provide also self-consistent simulation technique.
(functional when using high-order and adaptive refinement)
- Solves two-body and fragmentation problems of N -body
- First methodological test of N -body in deeply non-linear regime
- Stay tuned for halo properties...

