Modelling the connection between galaxies and their dark matter halos

Carlton Baugh Institute for Computational Cosmology Durham University

ICTP Workshop, Trieste, May 2015

INSTITUTE FOR COMPUTATIONAL COSMOLOGY

DARK MATTER

The efficiency of galaxy formation

- Galaxy formation very inefficient
- Globally only a few percent (~5%) of baryons are stars
- Different processes set efficiency of galaxy formation in different mass DM halos

Attempt to model the physics that shape this relation using gas simulations and semi-analytical models

Gas dynamics simulations: e.g. EAGLE

What is semi-analytical modelling?

A new model of galaxy formation

Lacey et al. 2015

Follow baryons in halo merger tree

Solve set of coupled differential equations

Baugh 2006, Benson 2010

What is semi-analytical modelling?

• Model parameters – too many?

Model parameters

parameter	value	range	type=F/P/S	description	Eqn/paper
Cosmology				Komatsu et al. (2011)	
Ω_{m}	0.272	-	F	matter density	
$\Omega_{\rm b}$	0.0455	-	F	baryon density	
h	0.704	-	F	Hubble parameter	
σ_8	0.81	-	F	Fluctuation amplitude	
n_s	0.967	-	F	Scalar spectral index	
Stellar population					Maraston (2005)
IMF : quiescent					
x	Kennicutt	-	F	IMF	Eq. 32
p	0.021	-	F	yield	Eq. 31
R	0.44	-	F	recyled fraction	Eq. 30
IMF : starburst					-
x	1	0-1	Р	IMF slope	Eq. 32
p	0.048	-	Р	yield	Eq. 31
R	0.54	-	Р	recyled fraction	Eq. 30
Star formation: quiescent					Lagos et al. (2011b
$\nu_{ m SF}$	$0.74 \mathrm{Gyr}^{-1}$	$0.25 - 0.74 Gyr^{-1}$	Р	efficiency factor for molecular gas	Eq. 7
P_0	$1.7 imes10^4$	-	F	normalisation of pressure relation	Eq. 6
α_P	0.8	-	F	slope of pressure relation	Eq. 6
Star formation: bursts					Baugh et al. (2005)
$f_{ m dyn}$	20	0 - 100	Р	Multiplier for dynamical time	Eq. 9
$\tau_{\rm *burst,min}$	0.1 Gyr	0-1.0	Р	minimum burst timescale	Eq. 9
Photoionization feedback					Benson et al. (2003
$z_{\rm reion}$	10	-	F	reionization redshift	
$V_{\rm crit}$	$30 \rm km s^{-1}$	-	F	threshold circular velocity	

Table 1. Table of parameters. F=fixed, P=primary, S=secondary. P_0 has units $k_B \text{cm}^{-3} \text{K}$.

Lacey et al. 2015

Model parameters

SNe feedback					Cole et al. (2000)
$V_{\rm SN}$	$320 \rm km s^{-1}$	anything	Р	pivot velocity	Eq. 10
$\gamma_{ m SN}$	3.2	0-5.5	Р	slope on velocity scaling	Eq. 10
$lpha_{ m ret}$	0.64	0.3-3	Р	reincorporation timescale multiplier	Eq. 11
AGN feedback & SMBH growth					Bower et al. (2006)
$f_{ m BH}$	0.005	0.001-0.01	S	fraction of mass accreted onto BH in starburst	Malbon et al. (2007)
$\alpha_{ m cool}$	0.8	0-2	Р	ratio of cooling/free-fall time	Eq. 12
$f_{ m Edd}$	0.01	-	S	controls maximum BH heating rate	Eq. 13
$\epsilon_{ m heat}$	0.02	-	S	BH heating efficiency	
Disk stability					Cole et al. (2000)
F_{stab}	0.9	0.9-1.1	Р	Threshold for instability	
Galaxy mergers					Jiang et al. (2008)
Size of merger remnants					Cole et al. (2000)
$f_{ m orbit}$	0	0 - 1	S	orbital energy contribution	Eq. 19
$f_{ m DM}$	2	-	S	dark matter fraction in galaxy mergers	
Starburst triggering in mergers					Baugh et al. (2005)
$f_{ m ellip}$	0.3	0.2 - 0.5	Р	Threshold on mass ratio for major merger	
$f_{ m burst}$	0.05	0.05 - 0.3	Р	Threshold on mass ratio for burst	
Dust model					Granato et al. (2000)
$f_{ m cloud}$	0.5	0.2 - 0.8	Р	fraction of dust in clouds	
$t_{ m esc}$	1Myr	1-10 Myr	Р	escape time of stars from clouds	
β_b	1.5	1.5 - 2	S	sub-mm emissivity slope in starbursts	Eq. A17

What is semi-analytical modelling?

- Model parameters
- Parameter calibration

Local galaxy luminosity function

Calibrated model

Vary strength of SNe feedback

Try different parameter values until model reproduces target data

Lacey et al. 2015

Lacey et al 2015

What is semi-analytical modelling?

- Model parameters
- Parameter calibration
- Modular upgrade implementation of physics

An example of semi-analytics in action: Modelling star formation: old method

Parametric forms for the SF law

$$\psi = \frac{M_{\rm cold}}{\tau_{\star}}$$

What drives star formation?

The Blitz & Rosolowski law (BR) Leroy et al. (2008), Bigiel et al. (2008)

$$\frac{\Sigma(H_2)}{\Sigma(HI)} = \left(\frac{P_{\text{ext}}}{P_0}\right)$$
$$\Sigma_{\text{SFR}} = \nu_{\text{SF}} \Sigma_{\text{mol}}$$

The mass function of atomic hydrogen

- Improved modelling of star formation
- Reduced volume of parameter space
- New predictions: HI mass function and CO LF
- Illustrates modular approach of semianalytics

Simulated ALMA images of GALFORM galaxies

(see Lagos et al. 2012 GALFORM + UCL_PDR model)

What is semi-analytical modelling?

- Model parameters
- Parameter calibration
- Modular upgrade implementation of physics
- Multi-wavelength/multi-property outputs

UV luminosity function at high-z

Lacey et al. 2011

UV luminosity function at high-z

Lacey et al. 2011

 $S_{1100\mu m} (mJy)$

Cowley et al. 2014

What is semi-analytical modelling?

- Model parameters
- Parameter calibration
- Modular upgrade implementation of physics
- Multi-wavelength outputs
- Complementary to gas simulations

SAMs vs gas simulations

Schaye et al. 2014

The galaxy – halo connection

How robust are the predictions of different semi-analytical models?

How well do empirical clustering models (HOD, SHAM) describe SAMS?

Contreras et al. 2013, arXiv:1301.3497 Contreras et al. 2014 ← → ∂ ∞ S Web galaxy-cata

Virgo - Millennium Database

Comparison of public results

N-BODY

Millennium – I N-body simulation

Independent construction of DM halo merger trees

SEMI-ANALYTICS

Bower et al. 20006 De Lucia & Blaizot 2007 Bertone et al. 2007 Font et al. 2008 Guo et al. 2011 Different physics implementations: AGN feedback, SNe feedback, gas cooling in satellites

Different observations used to set Model parameters

How many galaxies?

Cumulative number densities for stellar mass, cold gas mass, SFR

How many galaxies in each halo?

Galaxies ranked by STELLAR MASS: Decreasing galaxy abundance

Halo Occupation Distribution: model OUTPUT

Contreras et al. 2013

Clustering: stellar mass samples

Contreras et al. 2013

Small scale clustering differences: Median radius of galaxy pairs in halo

Contreras et al. 2013

Cold Gas Mass Sample

How do galaxy properties change with sub-halo mass?

Does the output of SAM look like SHAM?

Which subhalos host galaxies?

Samples defined by STELLAR MASS

Contrast SAM predictions with simple SHAM

Contreras et al 2014

Does SHAM reproduce SAM? Impact on correlation function

Compare clustering predicted directly by semi-analytic model with that predicted using a simple SHAM reconstruction

Contreras et al. (2014)

Which subhalos host galaxies?

Samples defined by COLD GAS MASS

Contrast SAM predictions with SHAM

Contreras et al 2014

Does SHAM reproduce SAM? Impact on correlation function

RED: Indirect: SHAM on stellar mass, use model SFR/stellar mass ratio Empirical reconstructions over predict the semi-analytic clustering

Contreras et al. (2014)

Conclusions

- Semi-analytical models allow us to test our ideas about galaxy formation: complementary to gas sims
- Robust predictions for clustering of galaxies selected by stellar mass
- Less robust predictions for abundance and clustering of SFR & cold gas mass selected samples: variation in one-halo term – different numbers of satellites
- Generic features predicted in HOD
- HOD(M*) looks like standard form
- HOD(SFR or cold gas) peaked different
- Some properties close to SHAM assumption e.g. M*
- Others very different from SHAM e.g. cold gas mass

GALAXIES

DARK MATTER

GALFORM – The Movie