

Reionisation and the build-up of the UV-background in <u>Eagle</u>

Mahavir Sharma ICC, Durham

Tom Theuns ICC, Durham for the Eagle collaboration

VIRC

IGM neutral

IGM highly ionised (with neutral DLAs)

Observational constraints:

I: Lya optical depth

Institute for Computational Cosmology 3

Tom Theuns

effective optical depth is not optical depth!

Institute for Computational Cosmology 4

Haardt & Madau '12

2: Damping wings

Mortlock + I I

Institute for Computational Cosmology 5

3: Thomson optical depth

- $\tau = 0.078^{+0.019}_{-0.019}, z_{re} = 9.9^{+1.8}_{-1.6}, Planck TT+lowP;$ (17a)
- $\tau = 0.070^{+0.024}_{-0.024}, z_{re} = 9.0^{+2.5}_{-2.1}, Planck TT+lensing;$ (17b)
- $\tau = 0.066^{+0.016}_{-0.016}, z_{re} = 8.8^{+1.7}_{-1.4}, Planck TT+lowP$ (17c) +lensing;
- $\tau = 0.067^{+0.016}_{-0.016}, z_{re} = 8.9^{+1.7}_{-1.4}, Planck TT+lensing (17d) +BAO;$
- $\tau = 0.066^{+0.013}_{-0.013}, z_{re} = 8.8^{+1.3}_{-1.2}, Planck TT+lowP$ (17e) +lensing+BAO.

ICC

Planck XV

(10)

Observational constraints: summary

Bouwens+15

Theoretical description

Before reionisation:

Increase in volume of an HII region

After reionisation:

Institute for Computational Cosmology 9

Tom Theuns

Escape fraction of ionising photons (LBGs at z=3)

Institute for Computational Cosmology

Shapley+06

Absolute escape fractions

Table 1 Compilation of Observed UV to LC Flux Ratios $(f_{1500}/f_{900})_{obs}$ and Escape Fractions of LBGs at $z \sim 3$

Reference	Sample	$(f_{1500}/f_{900})_{obs}$	$(f_{1500}/f_{900})_{\rm int}^{\rm a}$	fesc, rel	$f_{\rm esc}$
Steidel et al. (2001)	29 LBGs, Average	17.7 ± 3.8	3.0	0.31	
Shapley et al. (2006)	2 LBGs, Direct	$12.7 \pm 1.8, 7.5 \pm 1.0$	3.0	0.43, 0.72	
Shapley et al. (2006)	14 LBGs, Average	58 ± 25	3.0	0.094	
This work	7 LBGs, Direct	6.6 (median)	3.0	0.46 ^b	0.11°
This work	7 LBGs, Direct	6.6 (median)	3.0	0.83 ^d	0.20°
This work	7 LBGs, Direct	6.6 (median)	1.07	0.16 ^b	0.04°
This work	7 LBGs, Direct	6.6 (median)	1.07	0.30 ^d	0.07°

-

-

Lyman-break technique

ICC

Tom Theuns

ICC

Haardt & Madau 12

Institute for Computational Cosmology 16

Robertson+15

Constant escape fraction: faint (unobserved) galaxies dominate reionisation

ICC Instit

Theoretical challenge:

- can we find a local property of galaxies that yields high escape fraction of UV-photons at high-z, and a low escape fraction at low z
- does this yield realistic reionisation redshift as well as a realistic amplitude of the UV-background after reionisation?

The EAGLE project: Simulating the evolution and assembly of galaxies and their environments

Joop Schaye,^{1*} Robert A. Crain,¹ Richard G. Bower,² Michelle Furlong,² Matthieu Schaller,² Tom Theuns,^{2,3} Claudio Dalla Vecchia,^{4,5} Carlos S. Frenk,² I. G. McCarthy,⁶ John C. Helly,² Adrian Jenkins,² Y. M. Rosas-Guevara,² Simon D. M. White,⁷ Maarten Baes,⁸ C. M. Booth,^{1,9} Peter Camps,⁸ Julio F. Navarro,¹⁰ Yan Qu.² Alireza Bahmati,⁷ Till Sawala ² Peter A Julio F. Navarro,¹⁰ Yan Qu,² Alireza Rahmati,⁷ Till Sawala,² Peter A. Thomas,¹¹ James Trayford²

Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, the Netherlands

 I 504³ Gadget 3 simulation •(100 Mpc)³ volume • baryonic mass 10⁶ M_{sun} Calibrated to stellar MF •Local physics

The subgrid physics in Eagle

Improved SPH

"Anarchy" (Dalla Vecchia+)

Improved SPH

Kelvin-Helmholtz instability

		5 Da						
Name	L (comoving Mpc)	Ν	$m_{ m g}$ (M $_{\odot}$)	$m_{ m dm}$ (M $_{\odot}$)	$\epsilon_{\rm com}$ (comoving kpc)	ϵ_{prop} (proper kpc)	1	
L025N0376 L025N0752 L050N0752 L100N1504	25 25 50 100	376^3 752^3 752^3 1504^3	$\begin{array}{c} 1.81 \times 10^6 \\ 2.26 \times 10^5 \\ 1.81 \times 10^6 \\ 1.81 \times 10^6 \end{array}$	$\begin{array}{c} 9.70 \times 10^6 \\ 1.21 \times 10^6 \\ 9.70 \times 10^6 \\ 9.70 \times 10^6 \end{array}$	2.66 1.33 2.66 2.66	0.70 0.35 0.70 0.70	7 M CPU hours	Schave +14

0.70 0.70 7 M CPU hours

Schaye +14

The Hubble Sequence

Specific star formation rate as function of galaxy stellar mass

ICC

Schaye +14

Galaxy stellar mass function: evolution

Furlong + 14a (Durham)

Institute for Computational Cosmology 27

Tom Theuns

Galaxy stellar mass function: evolution

Specific star formation rate: evolution

Institute for Computational Cosmology 29

Furlong +, 14a

Calibration: enough, but not too much

Theoretical challenge:

- can we find a local property of galaxies that yields high escape fraction of UVphotons at high-z, and a low escape fraction at low z
- does this yield realistic reionisation redshift, and amplitude of the UVbackground?

Assumption: escape fraction depends on star formation surface density

Institute for Computational Cosmology 32

ICC

Borthakur+14

20 % escape fraction at z=0!

Institute for Computational Cosmology 33

Borthakur+14

Theoretical challenge:

- can we find a local property of galaxies that yields high escape fraction of UVphotons at high-z, and a low escape fraction at low z
- does this yield realistic reionisation redshift, and amplitude of the UVbackground?

Assumption: escape fraction depends on star formation surface density

Evolution of star formation rate density: Eagle compared to observations

Evolution of PDF of star formation in Eagle

ICC

Galaxies evolve along the Kennicutt-Schmidt relation towards star bursts

Tom Theuns

Build-up of emissivity

Sharma +15

Sharma +15

Summary:

ICC

transition of mostly neutral to mostly ionised

Eagle: reionisation due to bright galaxies with high SFR density

١S

Reionisation and the build-up of the UV-background in Eagle

Mahavir Sharma ICC, Durham

Tom Theuns ICC, Durham for the Eagle collaboration

VIRG

Swift: SPH on current/future architectures

Gonnet, Schaller, Theuns, Chalk

SWIFT: Task-based parallelism, hybrid shared/distributed-memory parallelism, and SPH simulations

arXiv:1309.3783

Task-based parallelism dramatically improves load balance and overlaps communication and computation

Algorithms for SPH Hybrid shared/distributed-memory parallelism

