Extracting Non-Gaussian Information from Large-scale Structure

Nuala McCullagh

Advanced Workshop on Cosmological Structures from Reionization to Galaxies

ICTP, Trieste, Italy 12 May, 2015

With: Mark Neyrinck, Alex Szalay, Shaun Cole, Peder Norberg

Outline

- Large-scale structure as a cosmological probe
- Beyond Gaussian statistics:
 - Log and Gaussianization transform
 - Higher-point statistics
- Summary and future work

Large-Scale Structure

Log transform

Gaussianization transform

1000

100

If $\delta_g = f(\delta_{DM})$

then Gauss(δ_g)=Gauss(δ_{DM})

Figure: Mark Neyrinck

2

 P_{δ}

Real space

Redshift space

computed FoG

Higher-point statistics

 $\zeta(r_1, r_2, r_3) = \langle \delta(\mathbf{x}_1) \delta(\mathbf{x}_2) \delta(\mathbf{x}_3) \rangle$

 $\langle \delta(\mathbf{k}_1) \delta(\mathbf{k}_2) \delta(\mathbf{k}_3) \rangle \equiv (2\pi)^3 B(k_1, k_2, k_3) \delta_D(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)$

Galaxy 3-point correlation function/bispectrum contains information about:

- Galaxy bias
- Primordial non-Gaussianity/ inflation
- Growth of structure/gravity

3-point Correlation Function

Lagrangian Perturbation Theory:

$$\boldsymbol{x}(\tau) = \boldsymbol{q} + \boldsymbol{\Psi}(\boldsymbol{q}, \tau).$$
$$\boldsymbol{\Psi}(\boldsymbol{q}, \tau) = \boldsymbol{\Psi}^{(1)}(\boldsymbol{q}, \tau) + \boldsymbol{\Psi}^{(2)}(\boldsymbol{q}, \tau) + \cdots.$$

Real space result:

$$\zeta(r_1, r_2, r_3) = D^4 \left(\frac{34}{21} \xi_0^0(r_1) \xi_0^0(r_3) - \cos \theta_{31} \left(\xi_1^1(r_1) \xi_1^{-1}(r_3) + \xi_1^{-1}(r_1) \xi_1^1(r_3) \right) + \frac{2}{21} \left(1 + 3\cos 2\theta_{31} \right) \xi_2^0(r_1) \xi_2^0(r_3) + 2 \operatorname{cyclic} \right).$$

RSD and (nonlocal) bias:

$$\mathbf{s} = \mathbf{x}(\mathbf{q}) + f(\Psi(\mathbf{q}) \cdot \hat{n})\hat{n} \qquad \qquad \delta_{x,g}(\mathbf{x},t) = b_1\delta(\mathbf{x},t) + \frac{b_2}{2}(\delta^2(\mathbf{x},t) - \sigma^2) \\ \left\{ + \frac{b_{s^2}}{2}(s^2(\mathbf{x},t) - \langle s^2 \rangle) \right\}$$

Results: Dark Matter

Results: Biased tracers

Summary & Future Work

- Usual 2-point statistics of the matter density field do not capture the full cosmological information
- Log/gaussianization transform accesses non-Gaussian information in galaxy density fields:
 - Decouples clustering information and tracer bias
 - May not be as effective in redshift space
- Higher-point statistics also access non-Gaussian information
 - Bias and RSD must be included in analytic models
 - Will test configuration-space model against N-body simulations
 - Possibilities for extending model beyond tree-level PT, including Fingers of God, etc

Thank you!