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Figure 2. Power spectra of mat-
ter and two mass ranges of haloes
in the MIP ensemble-mean fields.
The Gaussianized-density power spec-
tra PGauss(�) show substantially less
di↵erence among the various density
fields than the raw density power
spectra P�, supporting the hypothesis
that a local, strictly-increasing density
mapping captures the mean relation-
ship between matter and haloes.

The usual � clustering statistics
have large statistical error bars on
nonlinear scales, which can swamp
errors from sub-optimal measure-
ment. But Gaussianized cluster-
ing statistics have great statistical
power; with that power comes great
responsibility to measure them ac-
curately, which is what we plan to
do in future work.
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Galaxy 3-point correlation 
function/bispectrum contains 
information about: 
 
•  Galaxy bias 
 
•  Primordial non-Gaussianity/

inflation 
 
•  Growth of structure/gravity 
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CHAPTER 4. THE NONLINEAR MATTER BISPECTRUM

of the measured redshift of galaxies due to peculiar velocities further enhances the

non-Gaussianity. The leading order statistic sensitive to such non-Gaussianity is the

three-point correlation function and its Fourier transform the bispectrum. The three-

point correlation function is defined as:

⇣(r1, r2, r3) = h�(x1)�(x2)�(x3)i , (4.1)

where �(x) is the over-density at position x, r1 = |x1 � x3|, r2 = |x2 � x1|, and

r3 = |x3 � x2| are the lengths of the sides of the triangle formed by x1, x2, and x3.

The bispectrum is defined as:

(2⇡)3B(k1, k2, k3)�D(k1 + k2 + k3) = h�̂(k1)�̂(k2)�̂(k2)i , (4.2)

where �D is the 3-dimensional Dirac-delta function ensuring the wave-vectors k1, k2,

and k3 form a triangle.

The galaxy three-point function and bispectrum have been measured previously

in several galaxy surveys, including IRAS (Scoccimarro et al. 2001), 2dFGRS (Verde

et al. 2002; Gaztañaga et al. 2005), SDSS (Nichol et al. 2006; Nishimichi et al. 2007;

Maŕın 2011; McBride et al. 2011a,b), and WiggleZ (Maŕın et al. 2013), but have not

been as fruitful as their two-point counterparts. This is in part because theoretical

models of the three-point correlation function and bispectrum have not yet reached

the level that is required for sophisticated data analysis.

Future surveys promise orders of magnitude improvement in both galaxy number

density and volume coverage, permitting better determination of the higher-point
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the nonlinear evolution of the matter density field. Stan-
dard perturbation theory (PT) (for a review: Bernardeau
et al. [17]) models nonlinearities in the matter density
field as a pressureless, single fluid evolving under gravi-
tational interaction. In PT, the leading order, tree-level,
matter bispectrum can be calculated from the second or-
der solution for the density field, giving us an expression
that is valid on large scales. Beyond tree-level, one can
include successive higher order corrections to the bispec-
trum, which may correctly model the non-linear bispec-
trum in the quasi-nonlinear regime. For even smaller
scales, where the r.m.s. of the density contrast is of or-
der unity, PT breaks down and the matter density field
is in the fully nonlinear regime. This has led to the de-
velopment of various phenomenological fitting formulas
based on N -body simulations. There are two versions
of fitting formulas available in the literature: by Scocci-
marro and Couchman [18] and by Gil-Maŕın et al. [19],
etc, which claim to better model the nonlinear behav-
ior of the bispectrum at low redshift. In light of the
recent development of renormalized perturbation theory
[? ], one can also try simplistic models of renormalizing
the power spectrum while keeping the tree-level vertex
(the second order kernel) intact. That is, we assume
that the nonlinear behavior of the bispectrum is com-
pletely described by the nonlinear power spectrum, so the
usual tree-level expression is altered by replacing the lin-
ear power spectrum with the nonlinear power spectrum.
To verify these formulas, we compare the three nonlin-
ear formulas for the matter bispectrum with the results
from the N -body simulation with the smallest transient
e↵ect, and find the region of validity for each of formula,
in particular, at high redshifts, 1 < z < 6.

Another approach to modeling the nonlinear matter
distribution that has gained recent interest is the log-
normal approximation [20–22]. A log-transform exploits
the fact that the nonlinear density field is closer to log-
normal than to normal. The log-transformed density field
is thus close to a Gaussian field, and, therefore, the two-
point correlation function of log-transformed field should
be able to approximate the entire statistics. Due to this
property, the log-normality is most popularly used to
generate mock realizations for galaxy surveys such as
SDSS (ref) and WiggleZ (ref). While the log-normal
model is certainly more realistic than a Gaussian model
for the density field, using exactly log-normal mocks may
lead to incorrect higher-point statistics, such as the bis-
pectrum, and could lead to errors in estimating covari-
ance matrices. Here, we test the log-normality of the
matter density field by measuring the bispectrum of the
log-transformed field. This provides a good diagnostic as
the bispectrum of the log-transformed density field must
vanish if the density is exactly log-normal.

This paper is organized as follows. In Sec. II, we dis-
cuss the graphical challenge of visualizing the bispec-
trum, and introduce a flattening plot, which shows all
of the measured bispectrum, that we shall use through-
out this paper. Then, we address the numerical and

theoretical challenges that we listed above in the follow-
ing order. Sec. III reviews the standard perturbation
theory approach to calculating the tree-level bispectrum
and first-order transients from initial conditions. Sec. IV
presents a suite of simulations to study the e↵ect of ini-
tial conditions on the measured bispectrum, and gives
a simple formula for predicting the transient error in-
duced in the bispectrum at a given redshift from both
Zel’dovich and 2LPT initial conditions and with various
starting redshifts. We then discuss in Sec. V phenomeno-
logical models of the nonlinear bispectrum. We show that
while the models work well for the redshifts and scales
they were optimized for, they do not all extend well be-
yond these regimes, especially at high redshift (z > 2).
Finally, in Sec. VI, we analyze the bispectrum of the log-
transformed density field in order to test the assumption
of log-normality. We show that while the skewness of
this transformed field is small, the reduced bispectrum is
nonzero, indicating that the assumption of log-normality
may lead to non-negligible errors in higher order statis-
tics. We conclude in Sec. VII.

II. VISUALIZATION

The bispectrum B(k
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) of the Fourier space den-
sity contrast field �(k) is defined as:
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where the �
D

is a Dirac-delta function. The bispectrum is
non-zero only where the three wavevectors form a trian-
gle due to statistical homogeneity of the matter density
field. Furthermore, statistical isotropy dictates that the
bispectrum is independent of the orientation of the trian-
gle, so the magnitudes of the wavevectors specify the bis-
pectrum1. Without loss of generality, we impose the con-
dition that k

1

� k
2

� k
3

throughout the paper. For the
later use, it is useful to consider various limiting triangu-
lar configurations for reference: squeezed (k

1

⇡ k
2

� k
3

),
elongated (k
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= k
2

+k
3

), folded (k
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= 2k
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), isosce-
les (k
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3

), and equilateral (k
1
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2

= k
3

). For graph-
ical illustration of each triangular configuration, we refer
the readers to Fig. 1 of [10].

As we shall show in the next section, the leading order
matter bispectrum in PT is given by
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1
With redshift-space distortions, statistical istotropy is violated,

and the bispectrum depends on the angle between the wavevec-

tors and the line-of-sight direction. In this paper, we only discuss

the matter density field in the real space.
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Appendix E

Lagrangian Perturbation Theory and Initial condition
for Cosmological N-body Simulation

We generate the initial condition for cosmological N-body simulation by using La-

grangian perturbation theory. In this section, we review the linear and second order La-

grangian perturbation theory and compare the cosmological initial condition generated from

two theories.

E.1 Lagrangian perturbation theory formalism

Let us summarize the result of the Lagrangian perturbation theory. The reader can

find a review on the subject in Bouchet et al. (1995); Bernardeau et al. (2002).

While Eulerian perturbation theory (Chapter 2) describes the density and veloc-

ity fields of matter at a fixed (‘comoving’ in cosmology) coordinate system, Lagrangian

perturbation theory concentrates on the trajectory of individual particle. We denote the

Eulerian (comoving physical) coordinate x, and the Lagrangian (comoving initial) coordi-

nate q. As we define the both coordinate in comoving sense, the expansion of Universe

does not change them. In Lagrangian perturbation theory, the dynamical variable is the

Lagrangian displacement field Ψ(q, τ), which is defined by

x(τ) = q+Ψ(q, τ). (E.1)

Note that Ψ = 0 initially so that q is the same as the usual comoving coordinate at initial

time, τ = 0.

The particle trajectory in the expanding universe is governed by the equation of

motion:
d2x

dτ2
+H(τ)

dx

dτ
= −∇xΦ, (E.2)

where Φ is the peculiar gravitational potential, and

H(τ) ≡
1

a

da

dτ
= a(t)H(t) (E.3)
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is the modified Hubble parameter. Note that we are using a conformal time τ which is

related to the Robertson-Walker coordinate time by dt = adτ . Taking a divergence of this

equation, we get

∇x ·
[

d2x

dτ2
+H(τ)

dx

dτ

]

= −∇2
xΦ = −

3

2
H2Ωmδ(x), (E.4)

where δ(x) is the density contrast, δ(x) ≡ ρ(x)/ρ̄− 1.

The particle density in the Lagrangian coordinate is the same as the average density

of the universe. Therefore, by using the mass conservation, we have

ρ̄(τ)d3q = ρ(x, τ)d3x = ρ̄(τ) [1 + δ(x, τ)] d3x. (E.5)

By using the equation above, we can relate the Eulerian density contrast δ(x, τ) to the

Lagrangian displacement vector Ψ(q, τ) as

1 + δ(x, τ) =

∣

∣

∣

∣

d3q

d3x

∣

∣

∣

∣

=
1

J(q, τ)
, (E.6)

where

J(q, τ) = det (δij + Ψi,j(q, τ)) , (E.7)

is a Jacobian of the Lagrangian to Eulerian coordinate transform. Here, we abbreviate the

partial derivative with respect qj coordinate as Ψi,j ≡ ∂Ψi/∂qj .

By using equation (E.6), the equation of motion becomes

J(q, τ)∇x ·
[

d2x

dτ2
+H(τ)

dx

dτ

]

=
3

2
H2(τ)Ωm(τ)(J − 1). (E.8)

Using the chain rule
∂

∂xi
=

[

d3q

d3x

]

ij

∂

∂qj
= [δij +Ψi,j ]

−1 ∂

∂qj
,

the equation for displacement vector Ψ becomes

J(q, τ) [δij +Ψi,j(q, τ)]
−1

[

d2Ψi,j(q, τ)

dτ2
+H(τ)

dΨi,j(q, τ)

dτ

]

=
3

2
H2(τ)Ωm(τ) [J(q, τ) − 1] . (E.9)

Equation (E.9) is the master equation of the Lagrangian perturbation theory. In order to

get the perturbative solution, we solve the equation perturbatively in Ψ(q, τ):

Ψ(q, τ) = Ψ(1)(q, τ) +Ψ(2)(q, τ) + · · · . (E.10)
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Lagrangian Perturbation Theory: 

CHAPTER 5. THE 3-POINT CORRELATION FUNCTION IN REAL AND
REDSHIFT SPACE

The first invariant I1 remains unchanged because it is invariant under rotations.

The r3 leg of the triangle is rotated by angle � + ✓31, so the same expectation

value between x2 and x3 will be:

hI1(x2)d11(x3)
0i = cos2(� + ✓31) hI1(x2)d11(x3)i+ sin2(� + ✓31) hI1(x2)d33(x3)i

� 2 cos(� + ✓31) sin(� + ✓31) hI1(x2)d13(x3)i

=
1

3
⇠00(r3) +

1

6
(3 cos(2 (� + ✓31))� 1) ⇠02(r3) . (5.13)

If we add up all of the terms in the 3-point correlation function we get:

⇣(r1, r2, r3) = D4

 
34

21
⇠00(r1)⇠

0
0(r3)� cos ✓31

�
⇠11(r1)⇠

�1
1 (r3) + ⇠�1

1 (r1)⇠
1
1(r3)

�

+
2

21
(1 + 3 cos 2✓31) ⇠

0
2(r1)⇠

0
2(r3) + 2 cyclic

!
. (5.14)

We can see that this is equal to equation 5.10 for ✓31 = 0, ✓12 = ⇡, and ✓23 = 0.

This expression is equivalent to that given in Bernardeau et al. (2002), found by

Fourier-transforming the tree-level bispectrum from SPT.

5.2 Redshift Space

Unlike the in Fourier-space approach, we can easily extend this calculation to

redshift space. The transformation from real to redshift space is:

s = x(q)�Df(rq�(q) · ẑ)ẑ , (5.15)

where s is the redshift-space position, f is the linear growth rate, d lnD/d ln a, and

ẑ is the line-of-sight direction.
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Real space result: 

5

function j(x, t) to second order is:

j(x, t) = fDdnn(x) +D

2

⇣
f

2

dnn(x)
2 + fI

1

(x)dnn(x)

� 4

7
f(I

2

(x)�Mnn(x)) + fr� ·rdnn(x)
⌘

(41)

We now use Equations 40 and 41 to relate the galaxy
overdensity in redshift space to that in real space. We
must also express Equation 40 in terms of redshift co-
ordinate s through a Taylor expansion, bringing in an
additional term at second order.

�s,g(s, t) = �x,g(s, t) + j(s, t) + �x,g(s, t)j(s, t)

� f( (s) · ẑ)ẑ ·r(�x,g(s, t) + j(s, t)) (42)

To first order (assuming linear bias) this gives the well-
known Kaiser result in configuration space:

�s,g(s, t) = Db

1

(�L(s) + �dnn(s)) (43)

where � = f/b

1

.
Here we will consider two Eulerian bias models: lo-

cal and non-local. In the local bias model, the real-space
galaxy overdensity is related to the dark-matter overden-
sity in the following way:

�x,g(x, t) = b

1

�(x, t) +
b

2

2
(�2(x, t)� �

2) (44)

However, it has been shown (citation) that the local bias
model is not su�cient for describing both 2-point and 3-
point statistics, so we focus on a model proposed by Mc-
Donald, which includes terms proportional to the tidal
field:

�x,g(x, t) = b

1

�(x, t) +
b

2

2
(�2(x, t)� �

2)

+
bs2

2
(s2(x, t)� hs2i) (45)

where s

2 = sijsji is related to the tidal tensor:

sij(x, t) ⌘ @

2

�(x, t)

@xi@xj
� 1

3
�

K
ij �(x, t) (46)

As we only need the galaxy overdensity to second order
for tree-level, we can write sij in terms of initial (linear)
quantities to find s

2(x, t) to leading order:

s

2(x, t) = D

2

✓
2

3
I

2

1

(x)� 2I
2

(x)

◆
(47)

As found in (some papers) the bias parameter bs2 can
be expressed in terms of b

1

:

bs2 = �4

7
(1� b

1

) (48)

5. DISCUSSION

We now look at the theoretical predictions made in
Section ?? for the real- and redshift-space 3-point corre-
lation functions. In order to verify our results, we also
look at preliminary comparisons to N -body simulation
data.

We first consider the monopole in redshift space, which
is defined as:

⇣

0

(s
1

, s

2

, s

3

) =

Z ⇡/2

�⇡/2

⇣↵(s1, s2, s3,↵) sin↵ d↵ . (49)

The integral picks out only the ` = 0 terms in Equation
34.
Figure 3 shows the 3-point correlation function of sev-

eral isosceles configurations in real and redshift space. It
shows the 3-point correlation function of equilateral tri-
angles in real space (black line), redshift-space monopole
(blue line), and ⇣↵ for ↵ = 0 (dashed green line),
and ↵ = ⇡/2 (dot-dashed green line). The upper left
panel shows equilateral triangles, the upper right shows
r

2

= r

3

= 2r
1

, and so on. Notice that the monopole term
is similar (but not equivalent to) the real-space prediction
in these configurations. Also, the signal from triangles
along the plane of the sky (↵ = 0) is boosted compared
to that from triangles perpendicular to the plane of the
sky (↵ = ⇡/2). This is similar to what we see in the
2-point correlation function in redshift space.
We can also look at the reduced 3-point correlation

function:

Q↵(s1, s2, s3,↵) =
⇣↵(s1, s2, s3,↵)

⇠

(1)

s (s
1

)⇠(1)s (s
2

) + ⇠

(1)

s (s
1

)⇠(1)s (s
3

) + ⇠

(1)

s (s
2

)⇠(1)s (s
3

)
,

(50)

where

⇠

(1)

s (s) =

✓
1 +

2f

3
+

f

2

5

◆
⇠L(s) , (51)

is the angular-averaged (monopole) linear correlation
function in redshift space.
Figure 4 shows the dependence of the tree-level re-

duced 3-point correlation function on opening angle (✓
12

)
for r

1

= 10 and 20 Mpc/h, for di↵erent ratios of r
2

/r

1

in real and redshift space. The left panels show the
real-space prediction and the right panels show Q↵ for
↵ = 0 (dashed lines) and ↵ = ⇡/2 (solid lines). We can
see again that for ↵ = 0, Q↵ is boosted compared to
↵ = ⇡/2. Also, the dip at ✓

12

= ⇡/2 in the reduced
bispectrum is deeper for the ↵ = ⇡/2 case.
It is clear that redshift-space distortions have a consid-

erable e↵ect on the 3-point statistics of the matter den-
sity, introducing a dependence on orientation from the
line-of-sight direction that does not exist in real space.
Next, we compare our prediction for the angular-

averaged 3-point correlation function (monopole) to mea-
surements from an N -body simulation. We use 4 dark-
matter realizations, each a 1 (Gpc/h)3 box, to measure
the 3-point correlation function in real and redshift space
at z = 0. The 10243 particles in each simulations were
subsampled to reduce computing time1.
The 3-point correlation function was measured in each

volume in both real and redshift space (monopole). Fig-
ure 5 shows the 3-point correlation function for triangles
with s

1

= 20 Mpc/h, s
2

= 40 Mpc/h (left panel) as well
as s

1

= 30 Mpc/h, s
2

= 60 Mpc/h (right panel). The er-
ror bars are estimated using the standard deviation of the

1 The Indra simulations were run by Jie Wang at Johns Hop-
kins University and 3-point function measurements are courtesy of
Felipe Marin at Swinburne University.
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The r

3

leg of the triangle is rotated by angle � + ✓

31

,
so this expectation value between x

2

and x

3

will be the
same as equation 20 with r

1

replaced by r

3

and � replaced
by � + ✓

31

.
If we add up all of the terms in the 3-point correlation

function we get:
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We can see that this is equal to equation 18 for ✓
31

= 0,
✓

12

= ⇡, and ✓

23

= 0.
We now compare this expression to that found from

Fourier transforming the Standard Perturbation Theory
(SPT) bispectrum. The tree-level bispectrum from SPT
is written as a function of the linear power spectrum as
follows:

B(k
1

, k

2

, k

3

) = 2
⇣
F

(s)
2

(k
1

, k

2

)PL(k1)PL(k2) + 2 cyclic
⌘
.

(22)

F

(s)
2

is the symmetric 2nd-order kernel from SPT (see ?

for a review).

F
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The Fourier-transform of this expression gives the tree-
level 3-point correlation function (?):
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where ⇠(r) here is the linear correlation function, or ⇠0
0

(r)
in our notation.
We can rewrite the middle two terms in our notation

using the relations between derivatives of spherical Bessel
functions:
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1

(r) (25)
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It can also be shown that the last term is equivalent to:
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Combining these terms, we see that the expression in
Equation ?? is equivalent to our expression in Equation
21.
The fact that we recover this known result in real space

validates the approach outlined in this Section. We now
use this approach to compute the 3-point correlation
function in redshift space.

3. REDSHIFT SPACE

The transformation from real to redshift space is:

s = x(q) + f( (q) · n̂)n̂ , (28)

where s is the redshift-space position, f is the linear
growth rate, d lnD/d ln a, n̂ is the line-of-sight direction,
and  is the displacement field from equation 1.
We now follow the same procedure as in Section 2 to

compute the overdensity in redshift space using the Jaco-
bian of the transformation in Equation 28. The redshift-
space density to second order is:
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where dnn is the line-of-sight component of the deforma-
tion tensor, and Mnn is the corresponding minor of the
matrix.
We write the density as a function of redshift-space

coordinate s as we did in the previous section through a
Taylor expansion:
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In the distant-observer approximation, we can take the
line-of-sight direction n̂ to be in the ẑ direction.
For a general triangle in real (isotropic) space, the an-

gle � cancels out in the full 3-point function (Equation
21), as expected. This is because the real-space 3-point
correlation function is independent of the orientation of
the triangle.
In redshift space, where the ẑ direction is our line of

sight, in general we expect the 3-point correlation func-
tion to depend on the angle �. But, this is not enough to
fully describe the triangle in redshift space: we also need
to take into account the angle that the plane of the trian-
gle makes with the line of sight. In the previous section,
the triangle we considered in the x-z plane makes an an-
gle ↵ = ⇡/2 with the line of sight (see lower triangle in
Figure 2). To describe any triangle, after rotating each
side by its angle (�, �0, �00) about the y-axis, we can then
rotate all of the sides by some angle � = ⇡/2� ↵ about

RSD and (nonlocal) bias: 
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Summary & Future Work 

•  Usual 2-point statistics of the matter density field do not 
capture the full cosmological information 

•  Log/gaussianization transform accesses non-Gaussian 
information in galaxy density fields: 
–  Decouples clustering information and tracer bias 

–  May not be as effective in redshift space 

•  Higher-point statistics also access non-Gaussian information 
–  Bias and RSD must be included in analytic models 

–  Will test configuration-space model against N-body simulations 

–  Possibilities for extending model beyond tree-level PT, including 
Fingers of God, etc 



Thank	
  you!	
  


