Extracting Non-Gaussian Information from Large-scale Structure

Nuala McCullagh

Advanced Workshop on Cosmological Structures from Reionization to Galaxies
ICTP, Trieste, Italy
12 May, 2015
With: Mark Neyrinck, Alex Szalay, Shaun Cole, Peder Norberg

Outline

- Large-scale structure as a cosmological probe
- Beyond Gaussian statistics:
- Log and Gaussianization transform
- Higher-point statistics
- Summary and future work

Large-Scale Structure

Log transform

Gaussianization transform

Decoupling Clustering and Tracer Bias

If $\delta_{g}=f\left(\delta_{D M}\right)$
then $\operatorname{Gauss}\left(\delta_{\mathrm{g}}\right)=\operatorname{Gauss}\left(\delta_{\mathrm{DM}}\right)$

Figure: Mark Neyrinck

Decoupling Clustering and Tracer Bias

Real space

Decoupling Clustering and Tracer Bias

Redshift space

Decoupling Clustering and Tracer Bias

Higher-point statistics

$$
\begin{gathered}
\zeta\left(r_{1}, r_{2}, r_{3}\right)=\left\langle\delta\left(\mathbf{x}_{1}\right) \delta\left(\mathbf{x}_{2}\right) \delta\left(\mathbf{x}_{3}\right)\right\rangle \\
\left\langle\delta\left(\boldsymbol{k}_{1}\right) \delta\left(\boldsymbol{k}_{2}\right) \delta\left(\boldsymbol{k}_{3}\right)\right\rangle \equiv(2 \pi)^{3} B\left(k_{1}, k_{2}, k_{3}\right) \delta_{D}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right)
\end{gathered}
$$

Galaxy 3-point correlation function/bispectrum contains information about:

- Galaxy bias
- Primordial non-Gaussianity/ inflation
- Growth of structure/gravity

3-point Correlation Function

Lagrangian Perturbation Theory:

$$
\begin{aligned}
& \boldsymbol{x}(\tau)=\boldsymbol{q}+\boldsymbol{\Psi}(\boldsymbol{q}, \tau) \\
& \boldsymbol{\Psi}(\boldsymbol{q}, \tau)=\boldsymbol{\Psi}^{(1)}(\boldsymbol{q}, \tau)+\boldsymbol{\Psi}^{(2)}(\boldsymbol{q}, \tau)+\cdots
\end{aligned}
$$

Real space result:

$$
\begin{aligned}
\zeta\left(r_{1}, r_{2}, r_{3}\right)= & D^{4}\left(\frac{34}{21} \xi_{0}^{0}\left(r_{1}\right) \xi_{0}^{0}\left(r_{3}\right)-\cos \theta_{31}\left(\xi_{1}^{1}\left(r_{1}\right) \xi_{1}^{-1}\left(r_{3}\right)+\xi_{1}^{-1}\left(r_{1}\right) \xi_{1}^{1}\left(r_{3}\right)\right)\right. \\
& \left.+\frac{2}{21}\left(1+3 \cos 2 \theta_{31}\right) \xi_{2}^{0}\left(r_{1}\right) \xi_{2}^{0}\left(r_{3}\right)+2 \text { cyclic }\right)
\end{aligned}
$$

RSD and (nonlocal) bias:

$$
\begin{aligned}
& \mathbf{s}=\mathbf{x}(\mathbf{q})+f(\Psi(\mathbf{q}) \cdot \hat{n}) \hat{n} \\
& \delta_{x, g}(\mathbf{x}, t)=b_{1} \delta(\mathbf{x}, t)+\frac{b_{2}}{2}\left(\delta^{2}(\mathbf{x}, t)-\sigma^{2}\right) \\
& \left(+\frac{b_{s^{2}}}{2}\left(s^{2}(\mathbf{x}, t)-\left\langle s^{2}\right\rangle\right)\right)
\end{aligned}
$$

Results: Dark Matter

Results: Biased tracers

Summary \& Future Work

- Usual 2-point statistics of the matter density field do not capture the full cosmological information
- Log/gaussianization transform accesses non-Gaussian information in galaxy density fields:
- Decouples clustering information and tracer bias
- May not be as effective in redshift space
- Higher-point statistics also access non-Gaussian information
- Bias and RSD must be included in analytic models
- Will test configuration-space model against N -body simulations
- Possibilities for extending model beyond tree-level PT, including Fingers of God, etc

Thank you!

