Constraints on Heating During the Era of First Galaxies: Recent Results from PAPER

Adrian Liu, BCCP Fellow, UC Berkeley ICTP Workshop

Take-home points

- The PAPER instrument does not look like a conventional imaging radio interferometer. Short, redundant baselines provide good sensitivity.
- PAPER's unusual design has led to some unusual analysis techniques, such as redundant baseline calibration and fringe-rate filtering.
- Recent PAPER measurements have set scientifically interesting upper limits on the 21cm power spectrum, placing constraints on heating at z = 8.4

The PAPER instrument

Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER)

WIND AUDIOLOGIA PARAMETRICAL STATE

* American and a second second

PIs: Parsons, Bradley Co-PIs: Aguirre, Carilli

Ali, Boyd, Chang, Cheng, DeBoer, Dexter, Dillon, Greenberg, Gugliucci, Horrell, Hsyu, Jacobs, Klima, Lacasse, **AL**, MacMahon, Moore, Parshare, Pober, Stefan, Walbrugh, Zheng

Why does PAPER look the way it does?

Pober et al. (2013)

Foregrounds are bright and dominate the cosmological signal

~100s to 1000s K

~ few mK ?

Frequency/radial dist

Foregrounds and power spectra

Foregrounds are probably localized in Fourier space...

Foregrounds here, perhaps?

Pober et al. (2013)

An interferometer builds up a picture of the sky Fourier mode by Fourier mode

Interferometry and power spectra

Image credit: Pober

$k_{\parallel} \sim \text{Baseline time delay}$

$k_{\parallel} \sim \text{Baseline time delay}$

Foregrounds should appear in a "wedge"

Foregrounds should appear in a "wedge"

Short baselines provide sensitivity while evading foregrounds and allowing novel calibration and analysis techniques

Raw data

Identical baselines sample <u>exactly</u> the same modes on the sky and (Noise temp) ~ 1/sqrt(N)

P(k)

 $P(k) \sim (temp)^2 \sim 1/N$

Raw data

Baselines see different Fourier components and cannot be combined...

P(k)

 $P(k) \sim 1/sqrt(N)$

Some analysis tricks

Short, redundant baselines provide sensitivity, evade foregrounds, and...

...allow for sky-independent calibration

AL et al. (2010) Parsons, **AL** et al. (2014) Zheng et al. (2014)

Different fringe-rates in the data correspond to different parts of the sky

A careful weighting of fringe-rates allows different parts of the sky to be isolated

Foreground systematics can be further mitigated by beam-sculpting

Latest upper limits from PAPER

Recent upper limits from the PAPER-64 array

- 135 days of observation.
- Results centered on $z \sim 8.4$ (151 MHz).
- 64 element array.
- Drift-scan configuration.
- Analysis tricks:
 - Improved redundant calibration ("omnical")
 - Near-optimal quadratic estimators
 - Fringe-rate filtering

PAPER 64-element array: Upper limit of (22.4 mK)² at 2-sigma in range $0.15 < k < 0.5hMpc^{-1}$

PAPER 64-element array: Upper limit of (22.4 mK)² at 2-sigma in range $0.15 < k < 0.5hMpc^{-1}$

PAPER 64-element array: Upper limit of (22.4 mK)² at 2-sigma in range $0.15 < k < 0.5hMpc^{-1}$

k [hMpc⁻¹] Ali, Parsons, ..., **AL** et al. (2015)

 ν [MHz]

Brighter spin temperatures give dimmer 21cm power spectra

Extreme neutral fractions give dimmer 21cm power spectra

Beginning of reionization

Middle of reionization

End of reionization

Take-home points

- The PAPER instrument does not look like a conventional imaging radio interferometer. Short, redundant baselines provide good sensitivity.
- PAPER's unusual design has led to some unusual analysis techniques, such as redundant baseline calibration and fringe-rate filtering.
- Recent PAPER measurements have set scientifically interesting upper limits on the 21cm power spectrum, placing constraints on heating at z = 8.4