Angular Power Spectrum Estimation in Radio Interferometric Observations

Samir Choudhuri Indian Institute Technology Kharagpur, India

Collaborators: Prof. Somnath Bharadwaj SK. Saiyad Ali Abhik Ghosh

2014MNRAS.445.4351C

 $V(U, \nu) = \iint A_{\nu}(\theta) I_{\nu}(\theta) e^{-2\pi i U \cdot \theta} d^{2}\theta$ Antenna beam pattern Intensity distribution $V(\mathbf{U}, \nu) = S(\mathbf{U}, \nu) + F(\mathbf{U}, \nu) + N(\mathbf{U}, \nu)$

Giant Metrewave Radio Telescope, Pune,India 30 fixed antennas x 45m diameter

It is currently operating at several frequency band in the frequency range 150 -1420 MHz **Foregrounds**

Point Sources

Diffuse

GMRT 150MHz Observation

Ghosh et al. 2012

How to quantify these fluctuations ?

Angular Power Spectrum

Any *brightness temperature fluctuation* on the sky are usually described by an expansion in spherical harmonics.

$$\delta T(\nu, \mathbf{\hat{n}}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m}(\nu) Y_{\ell m}(\mathbf{\hat{n}})$$

The Angular Power Spectrum defined as :

$$C_{l} = \langle a_{lm}(v) a_{lm}^{*}(v) \rangle$$

How they are related?

$$\mathcal{V}(\mathbf{U},\nu) = \mathcal{S}(\mathbf{U},\nu) + \mathcal{N}(\mathbf{U},\nu)$$

$$\uparrow$$
Entire Sky Signal

Two Visibility Correlation:

$$V_{2ij} \equiv \langle \mathcal{V}_i \mathcal{V}_j^* \rangle = V_0 e^{-|\Delta \mathbf{U}_{ij}|^2 / \sigma_0^2} C_{\ell_j} + \delta_{ij} 2\sigma_n^2$$
$$S_2(\mathbf{U}, \mathbf{U} + \Delta \mathbf{U}) = \frac{\pi \theta_0^2}{2} \left(\frac{\partial B}{\partial T}\right)^2 \exp\left[-\left(\frac{\Delta U}{\sigma_0}\right)^2\right] C_\ell$$
$$V_0 = \frac{\pi \theta_0^2}{2} \left(\frac{\partial B}{\partial T}\right)^2$$

Noise bias can be avoided by excluding self-correlation term.

Simulation

<u>Simulation</u>

We generate the $\Delta \tilde{T}(\mathbf{U})$,

$$\Delta \tilde{T}(\mathbf{U}) = \sqrt{\frac{\Omega C_{\ell}^{M}}{2}} [x(\mathbf{U}) + iy(\mathbf{U})],$$

$$C_{\ell}^{M} = A_{150} \times \left(\frac{1000}{\ell}\right)^{\beta} A_{150} = 513 \,\mathrm{mK}^{2} \quad \beta = 2.34$$

Ghosh et al. 2012
Then we use FFT to generate $\delta T(\vec{\theta})$ in the image plane.

Simulations has been done considering GMRT 150 MHz Observations.

Diffuse Emission (sky plane)

GMRT Baseline Distribution

Estimators

The Bare Estimator $\hat{E}_B(a)$ is defined as

$$\hat{E}_B(a) = \frac{\sum_{i,j} w_{ij} \mathcal{V}_i \mathcal{V}_j^*}{\sum_{i,j} w_{ij} V_0 e^{-|\Delta \mathbf{U}_{ij}|^2 / \sigma_0^2}} \qquad \boldsymbol{w}_{ij} = (1 - \delta_{ij}) K_{ij}$$

Correlation length, $\sigma_0 = \frac{0.76}{\theta_{FWHM}}$

For GMRT, $\sigma_0 = 16.6$

Disadvantage:

The Bare Estimator deals directly with the visibilities and the computational time for the pairwise correlation scales proportional to N^2 , where N is the total number of visibilities in the data.

Tapered Gridded Estimator

We define tapered Gridded Estimator as,

$$\hat{E}_{g} = \frac{(\mathcal{V}_{cg}\mathcal{V}_{cg}^{*} - \sum_{i} | \tilde{w}(\mathbf{U}_{g} - \mathbf{U}_{i}) |^{2} | \mathcal{V}_{i} |^{2})}{(|K_{1g}|^{2} V_{1} - K_{2gg}V_{0})}$$

$$\mathcal{V}_c(\mathbf{U}) = \tilde{w}(\mathbf{U}) \otimes \mathcal{V}(\mathbf{U})$$

Why Overestimate?

Random UV Distribution

Instrumental Effect

(a) Gain Error(b) W-term Effect

$$\mathcal{S}(u,v,w) = \int dl dm \frac{\delta I(l,m) \mathcal{A}(l,m)}{\sqrt{1-l^2-m^2}} e^{-2\pi i [ul+vm+w(\sqrt{1-l^2-m^2}-1)]}$$

SUMMARY

1.We have introduced two estimators for quantifying the angular power spectrum of the sky brightness temperature. We find that the Bare Estimator is able to recover the input model to a good level of precision. For the GMRT estimated angular power spectrum from the Tapered Gridded Estimator is largely within the 1σ errors from the input model.

2.We studied the effect of gain error and find that expectation value of the estimators only depends on the phase error.

3.We find that the w-term does not cause a very big change in the estimated C_{ℓ} at the scales of our interest.

