

Mark Dijkstra

Institute of Theoretical Astrophysics, University of Oslo

Prologue: The Absurd QM of the 21cm Line

thanks to D. Spiegel

The 21-cm transition of atomic hydrogen connects the two **hyperfine** levels of atomic hydrogen in its ground state.

Prologue: The Absurd QM of the 21cm Line

thanks to D. Spiegel

The 21-cm transition of atomic hydrogen connects the two **hyperfine** levels of atomic hydrogen in its ground state.

In quantum mechanics, the difference in energy between these two states is equal to **zero for all r > 0**, where r denotes the separation between electron and proton.

Non-zero contribution comes **entirely** from the unlikely event that r=0.

Why Lya Emitting Galaxies Probe Reionization

Movie by M. Alvarez

Neutral intergalactic gas is modulates the observed Ly α flux from distant galaxies.

Lya Forest Constraints on Reionization

Lya forest suggest inhomogeneous **mostly** complete by $z\sim6:x_{HI}<0.11$ (1-sigma) Room for significant amounts of HI (tens of per cent of the volume) at z > 6. **Suppressed Lyα Flux from Galaxies at z>6 I: Lyα Fraction**

Trieste

Suppressed Lyα Flux from Galaxies at z>6 I: Lyα Fraction

but then....(trend continues to z=8, see e.g. Treu et al. 2013, Tilvi et al. 2014, Finkelstein et al. 2014)

Suppressed Lya Flux from Galaxies at z>6 II: LAE LFs

 $Ly\alpha$ emitter' (selected via Ly α) luminosity function.

Trieste

A Reduction in Lyα Flux from Galaxies at z>6

Sudden suppression of Ly α flux from galaxies is observed in two different galaxy populations (continuum and line selected).

Importantly: z-evolution of Ly α fraction and LAE luminosity function is *quantitatively* consistent at z=2-7 (MD & Wyithe 2012, MD et al. 2014, Gronke et al. 2014).

Trieste

Reionization & Visibility of the Lya line from Galaxies

Ly α transfer is a multi-scale problem.

IGM – Transmitted fraction =
$$\int d\nu_{\rm e} \ L(\nu_{\rm e}) \exp[-\tau_{\rm Ly\alpha}(\nu_{\rm e})]$$

self-shielding absorbers inside ionized bubbles (see e.g. Bolton & Haehnelt 2013)

M. Dijkstra

$$\tau_{\rm Ly\alpha}(\nu_{\rm e}) = \tau_{\rm HII}(\nu_{\rm e}) + \tau_{\rm D}(\nu_{\rm e})$$

self-shielding absorbers inside ionized bubbles (see e.g. Bolton & Haehnelt 2013)

Diffuse neutral intergalactic gas.

self-shielding absorbers inside ionized bubbles (see e.g. Bolton & Haehnelt 2013)

Post reionization RT' brightens Ly α from z=0-6!

Reionization & Visibility of the Lya line from Galaxies

Reduced Ly α flux from galaxies at z>6 is a key signature of reionization

Question: what if it is due to reionization, what does this say about x_{HI} ?

Assume small scale RT processes do not evolve from z=6-7.

Given `post reionization RT' brightens Ly α from z=0-6, this assumption is likely conservative.

Lyα Transfer During Reionization

Lyα Transfer During Reionization

Need to include 1. inhomogeneous nature of reionization process

DexM (Mesinger & Furlanetto 2007)

Lya Transfer During Reionization

Need to include 1. inhomogeneous nature of reionization process

2. self-shielding absorbers inside ionized bubbles

higher resolution hydrodynamical simulations (Enzo/RAMSES) that resolve Jeans mass using self-shielding prescription adopted in studies simulating Lya forest (Rahmati+2011)

Lya Transfer During Reionization

Need to include 1. inhomogeneous nature of reionization process

- 2. self-shielding absorbers inside ionized bubbles
- 3. line shape & normalization: transfer on interstellar scales

Sub-grid `shell-models' adopted by community modeling Lya lines of low-z Lya emitting galaxies.

Constraints on Reionization

from Pentericci et al. 2014 1.00 $\langle x_{\rm HI} \rangle = 0.0$ 0.10 P(>REW) x_{HI} 0.50.01 0.89 50 100 150 0 REW хні>0.4 at z=7 if хні~0.0 at x=6

Dijkstra et al. 2011, Jensen et al. 2013, Mesinger et al. 2015, Choudhury et al. 2015

Constraints on Reionization

Observations indicate that Ly α flux from galaxies at z>6 is suppressed.

Models that explain this reduction with reionization require

хні>0.4 at z=7 if хні~0.0 at x=6

because imprint of patchy/inhomogeneous reionization on Ly α flux is subtle: *Reionization cannot change Ly\alpha fraction by factor* > 2 *from z*=6-7 *(Mesinger et al. 2015)*

Rapid evolution in x_{HI} at odds with theory, but observational uncertainties still significant.

Constraints on Reionization: Context

Constraints on Reionization: Context

One of the most important current (& future) constraints on the EoR

Trieste

Constraints on Reionization: Context

Committing a Sin by allowing Evolving Galaxy Properties I: Imprint of an Evolving Escape Fraction fesc ?

Observed Ly α luminosity of a star forming galaxy is given by

Lya forest + LBG luminosity functions imply $f_{\rm esc} \sim 0.04([1+z]/5)^{\gamma}, \quad \gamma = 3-5$

Committing a Sin by allowing Evolving Galaxy Properties I: Imprint of an Evolving Escape Fraction fesc ?

Committing a Sin by allowing Evolving Galaxy Properties II: Imprint of an Evolving Line Profile ?

Choudhury et al. 2015 IGM – Transmitted fraction = $\int d\nu_{\rm e} L(\nu_{\rm e}) \exp[-\tau_{\rm Ly\alpha}(\nu_{\rm e})]$

Evolving redshift of Ly α line, $\Delta v_{\rm int}$, can help increase the IGM opacity.

Committing a Sin by allowing Evolving Galaxy Properties II: Imprint of an Evolving Line Profile ?

Choudhury et al. 2015 IGM – Transmitted fraction = $\int d\nu_{\rm e} L(\nu_{\rm e}) \exp[-\tau_{\rm Ly\alpha}(\nu_{\rm e})]$

Evolving redshift of Lya lin $\Delta v_{
m int}$, can help increase the IGM opacity.

Getting systemic redshifts of high-z galaxies is difficult, but ALMA can help.

Observational Signatures of Evolving Galaxy Properties: Imprint of an Evolving CGM properties ?

Momose et al. 2014

Ly α halos are more extended at z>6 than z < 6. More scattering in CGM? If so, then the CGM is more opaque which would suppress the flux.

Conclusions: Constraints on Reionization from Lya Emitting Galaxies

Trieste

1. Suppressed Ly α flux from Galaxies at z>6 favor substantially neutral Universe at z~7.

• Consistent with constraints form Lya forest and CMB.

• Current observational uncertainties are still large, but # of Ly α galaxies expected to increase by ~ 2 orders of magnitude in coming years:

(i) spatial modulation in IGM opacity? (ii) cross-correlation with cosmological 21-cm..

Advertisement; see MD. 2014, PASA, for an extended review & for outlook on the future.

Conclusions: Constraints on Reionization from Lya Emitting Galaxies

2. Understanding the reduced Ly α flux from Galaxies at z>6 constrains more than reionization, but also provides unique insights into galaxy formation.

• Lyα halos encode information on cold gas in CGM, *and* the escape of ionizing & Lyα photons from galaxies (Mas-Ribas et al. in prep)

 \bullet Lya line profiles provide unique constraints on gaseous outflows in galaxies at high-z.

Advertisement; interstellar Lyα RT online by M. Gronke <u>http://bit.ly/man-alpha</u>

