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Cosmological Probes
Cosmic Microwave Background Gravitational Lensing

Galaxy ClusteringSupernovae



Wide-Field Instruments
CMB Planck, SPT,  ACT,  Keck

VIS/NIR
Imaging VST, DES, Pann-STARRS, LSST

Euclid, WFIRST, Subaru
Boss, Wigglez, DESI, HETDEXSpectro

Radio LOFAR, GBT, Chimes, BINGO, GMRT, 
BAORadio, ASKAP, MeerKAT, SKA



Impact on Cosmology

Stage IV Surveys will challenge all sectors of the 
cosmological model: 
• Dark Energy: wp and wa with an error of 2% and 

13% respectively (no prior) 
• Dark Matter: test of CDM paradigm, precision of 

0.04eV on sum of neutrino masses (with 
Planck) 

• Initial Conditions: constrain shape of primordial 
power spectrum, primordial non-gaussianity 

• Gravity: test GR by reaching a precision of 2% 
on the growth exponent  (dlnm/dlnam) 

→ Uncover new physics and map LSS at 0<z<2: 
Low redshift counterpart to CMB surveys

 Stage IV

 Stage IV+Planck

 Stage IV+Planck

 Stage IV

Amara et al. 2008



Challenges
Current:  

High-precision Cosmology era with CMB   

Next stage: 

High-precision Cosmology with LSS surveys, different from 
CMB: 

‣3D spherical geometry

‣Multi-probe, Multi-experiments

‣Non-gaussian, Non-Linear

‣Systematics limited

‣Large Data Volumes

Radiation-Matter transition

Matter-Dark Energy transition



Bayesian Parameter Estimation

‣Bayesian inference:  p(θ|y)=p(y|θ)×p(θ)/P(y)

‣In practice: Evaluation of p(y|θ) is expensive, Nθ is large (≥7)

‣MCMC: produce a sample {θi} distributed as p(θ|y) (e.g. 
CosmoMC Lewis & Bridle 2002, CosmoHammer,  Akeret+ 2012)

θ1

θ2

p(θi|D)



‣ Bayesian inference relies on the computation of the 
likelihood function p(y|θ)

‣In some situations the likelihood is unavailable or intractable 
(eg. non-gaussian errors, non-linear measurement processes, 
complex data formats such as maps or catalogues)

‣ Simulation of mock data sets may however be done through 
forward modelling

Planck Collaboration: The Planck mission
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Fig. 19. The temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks, that
are well fit by a simple six-parameter⇤CDM theoretical model (the model plotted is the one labelled [Planck+WP+highL] in Planck Collaboration
XVI (2013)). The shaded area around the best-fit curve represents cosmic variance, including the sky cut used. The error bars on individual points
also include cosmic variance. The horizontal axis is logarithmic up to ` = 50, and linear beyond. The vertical scale is `(`+ 1)Cl/2⇡. The measured
spectrum shown here is exactly the same as the one shown in Fig. 1 of Planck Collaboration XVI (2013), but it has been rebinned to show better
the low-` region.
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Fig. 20. The temperature angular power spectrum of the CMB, esti-
mated from the SMICA Planck map. The model plotted is the one la-
belled [Planck+WP+highL] in Planck Collaboration XVI (2013). The
shaded area around the best-fit curve represents cosmic variance, in-
cluding the sky cut used. The error bars on individual points do not in-
clude cosmic variance. The horizontal axis is logarithmic up to ` = 50,
and linear beyond. The vertical scale is `(` + 1)Cl/2⇡. The binning
scheme is the same as in Fig. 19.

8.1.1. Main catalogue

The Planck Catalogue of Compact Sources (PCCS, Planck
Collaboration XXVIII (2013)) is a list of compact sources de-

tected by Planck over the entire sky, and which therefore con-
tains both Galactic and extragalactic objects. No polarization in-
formation is provided for the sources at this time. The PCCS
di↵ers from the ERCSC in its extraction philosophy: more e↵ort
has been made on the completeness of the catalogue, without re-
ducing notably the reliability of the detected sources, whereas
the ERCSC was built in the spirit of releasing a reliable catalog
suitable for quick follow-up (in particular with the short-lived
Herschel telescope). The greater amount of data, di↵erent selec-
tion process and the improvements in the calibration and map-
making processing (references) help the PCCS to improve the
performance (in depth and numbers) with respect to the previ-
ous ERCSC.

The sources were extracted from the 2013 Planck frequency
maps (Sect. 6), which include data acquired over more than two
sky coverages. This implies that the flux densities of most of
the sources are an average of three or more di↵erent observa-
tions over a period of 15.5 months. The Mexican Hat Wavelet
algorithm (López-Caniego et al. 2006) has been selected as the
baseline method for the production of the PCCS. However, one
additional methods, MTXF (González-Nuevo et al. 2006) was
implemented in order to support the validation and characteriza-
tion of the PCCS.

The source selection for the PCCS is made on the basis of
Signal-to-Noise Ratio (SNR). However, the properties of the
background in the Planck maps vary substantially depending on
frequency and part of the sky. Up to 217 GHz, the CMB is the
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24.2 4.3 0.45 0.65

22.7 3.1 0.91 0.32

Forward Modelling



‣ Consider reference data set y and simulation based model 
with parameters θ which can generate simulated data sets x

‣ Define:
• Summary statistics S to compress information in the data
• Distance measure ρ(S(x),S(y)) between data sets
• Threshold ε for the distance measure

‣Sample prior p(θ) and accept sample θ* if ρ(S(x),S(y))<ε, 
where x is generated from model θ*

‣ABC approximation to posterior: p(θ|y) ≃ p(θ|ρ(S(x),S(y))<ε)

‣ Use Monte Carlo sampler with sequential ε to sample ABC 
posterior (eg. ABC Population Monte Carlo)

Approximate Bayesian Computation
review: Turner & Zandt 2012,  see also: Akeret et al. 2015



Gaussian Toy Model
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Figure 1. Posterior distribution of the Gaussian toy model at di↵erent iterations t and corresponding
threshold values ✏t. The numerical ABC PMC posterior is represented using a kernel density estimator
(blue line) and is in good agreement with the analytical prediction (eq. 3.5, green line). As a
comparison, the expectation for a Bayesian analysis is shown in red, which is the same function in all
panels and was clipped when convenient.

4.1 Distance metric

Quantifying the discrepancy between two multidimensional statistical distributions is non-
trivial [see e.g. 46]. For univariate data sets, various statistical techniques have been devel-
oped to determine if two sets follow the same underlying PDF. A prominent example is the

– 9 –

Data set y: N samples drawn 
from gaussian distribution 
with known σ and unknown 
mean θ

Summary statistics: S(x)=<x>

Distance: ρ(x,y) = |<x>-<y>|

Akeret et al. 2015



Image Modelling

Figure 3. Marginal distributions of the four selected colums of the UFig Source-Extractor catalog
from the target image. The plot shows the non-gaussianity and the non-linear correlations of the data
set. Created with triangle.py [47]

observed data set while taking into account the correlation in the data sets. The distance
between the two projections is the maximal di↵erence between the cumulative distribution
functions (CDF) of their Mahalanobis distances.

4.2 Results

In this section, we combine the ABC PMC algorithm described in section 2.2 and the Maha-
lanobis distance metric to constrain the UFig simulation parameters to mimic a given target
image.

For this purpose we generated a target image using the parameters ✓̂ shown in the
second column of table 1 [see 22, 37, for details]:

• size-sigma defines the root mean square of the size (r50) distribution of galaxies in
arcsec,

• size-theta is the correlation angle for size-magnitude distribution of galaxies,

• e1-sigma and e2-sigma are root mean square of the two components of the galaxy
ellipticities e1 and e2.

For the example explored here all the other simulation parameters are kept fixed to val-
ues similar to those in [37]. We run the ABC PMC algorithm 1 with the OLCM permutation
kernel from Section 2.3 and N = 400 particles on these four simulation parameters. The

– 11 –

Bergé et al. 2013, Bruderer et al. 2015UFig: Ultra Fast Image Generator

UFig

data y: SExtractor catalogue  Bertin & Arnouts 1996
model: parametrised distribution of intrinsic galaxy properties



ABCPMC

Figure 5. The one- and two-dimensional marginal distributions of the approximate UFig parameter
posterior. The blue lines denote the true initial parameter configuration. Created with triangle.py

[47]

A Package distribution

Detailed documentation, examples and installation instructions for the ABC PMC imple-
mentation can be found on the package website http://abcpmc.readthedocs.org/. The
package is released under the GPLv3 license and has been uploaded to PyPI1 and can be
installed using pip2:

$ pip install abcpmc --user

This will install the package and all of the required dependencies. The development
is coordinated on GitHub http://github.com/jakeret/abcpmc and contributions are wel-
come.

References

[1] N. Christensen, R. Meyer, L. Knox, B. Luey, Bayesian methods for cosmological parameter
estimation from cosmic microwave background measurements, Class. Quant. Grav. 18 (14)
(2001) 2677.

1
https://pypi.python.org/pypi/abcpmc

2
www.pip-installer.org/
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Figure 2. Variance of ✓ as a function of the threshold values ✏ for the Gaussian toy model. The
numerical ABC PMC variance (blue line) is in good agreement with the analytical prediction (green
line) form eq. 3.6 and with the Bayesian case (red line) as ✏ ! 0.

two-sample Kolmogorov-Smirnov test (KS test). Applying a KS test to multivariate data is
not directly possible, especially beyond two dimensions. Applying the test to every dimen-
sion individually is typically insu�cient, as correlations between di↵erent parameters are not
taken into account. This is problematic for the image modeling application since, as we will
see below, the object properties in the Source-Extractor catalogs are typically numerous
and non-linearly correlated.

Diverse methods founded in information theory exist to quantify the di↵erence between
two multivariate distributions. These include the Kullback-Leibler divergences and its sym-
metrized variant the Jensen-Shannon divergence [48]. Both methods require the estimation
of the underlying PDF. A common way to do this is to use a nearest neighbor or a kernel
density estimator. However, both estimation method tend to introduce an unwanted noise
and bias in the distance measure [49]. Another approach is to define a distance metric be-
tween two multivariate data sets based on the Mahalanobis distance [38]. This circumvents
the need to estimate the underlying PDF, which is di�cult in higher dimensions. For this
reasons we opt for the latter in the following.

The Mahalanobis distance between data vector y (in our case derived from the target
image) and a simulated data vector x (from proposed simulated image) is based on the
summary statistic,

S(y) =
q

(y � µy)T⌃
�1
y (y � µy) (4.1)

and

S(x) =
q

(x� µy)T⌃
�1
y (x� µy), (4.2)

where µy is the mean of y and ⌃y its covariance matrix. Note that in eq. 4.2 the data
x is compared to the center µy and covariance matrix ⌃y of the observed data set y. As
S(x) and S(y) are one-dimensional projections of x and y the distance ⇢(S(x), S(y)) can be
set to the standard one dimensional KS test for two-samples. In other words, the projection
is the distribution of the distances to the center of the multidimensional distribution of the

– 10 –

ρ(S(x),S(y))= 1D KS distance

Mahalonobis distance:

Akeret et al. 2015



Monte-Carlo Control Loops

Lensing'Measurements'

Image'Simula1ons'
(UFig)'

Other'Diagnos1cs'

Lensing'Lensing'

Other' Other'

Lensing'

Input''Δ'Inputs'

0'

1'

Data'

2'

3.1'

3.2'

Other'

Refregier & Amara 2013



UFig

7x106	
  galaxies	
  (R<29)	
  
3x104	
  stars	
  
2.5	
  min	
  on	
  a	
  single	
  core

Bergé et al. 2013; Bruderer et al. 2015 

Ultra Fast Image Generator

DES SV UFig



HOPE

@hope.jit
def improved(x, y): 
    return x**2 + y**4

• Just-In-Time compiler for astrophysical computations

• Makes Python as fast as compiled languages

• HOPE translates a Python function into C++ at runtime

• Only a @jit decorator needs to be added

• Supports numerical features commonly used in 
astrophysical calculations

For more information see: http://hope.phys.ethz.ch 

Akeret et al. 2014



MCCL: First Implementation
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Tolerance Analysis
Bruderer et al. 2015 9
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Fig. 5.— Multiplicative bias in the measurement of �1 as a function of di↵erent parameter values and di↵erent shear measurement
methods. We simulate images equivalent to an area of 1000 deg2 for every configuration to calibrate the shear measurement. The change
is relative to the central data point, our fiducial shear calibration. The vertical blue bands show the range in parameter values data and
simulations are statistically consistent (95% confidence limits) (see Section 4.1). The horizontal gray bands correspond to the required
accuracy in the shear measurement of a 200 deg2 (light gray) and 5000 deg2 survey for the measurement not to be systematics-limited.
The star denotes the fiducial configuration.

Fig. 6.— Multiplicative bias in the measurement of �2. Similar to Fig. 5.



UFIG/BCC
Busha, Wechsler et al. 2015; Chang et al. 2015

+ Integration of spectroscopy simulations

Our Universe CTIO / DECam DES images DM catalogsDESDM 
software

Blind Cosmology 
Challenge (BCC)
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Ultra Fast Image 
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Simulated 
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Partial 
DESDM 
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Simulated 
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?

Transfer Function

Nord et al. 2015, Nicola et al. 2015 



Conclusions

‣ Upcoming and future LSS surveys have great promise for 
cosmology but will require new data analysis approaches

‣ Forward modelling is a promising approach to analyse complex 
data sets 

‣ ABC can provide an approximation to the posterior in cases 
when the likelihood is not available


