Forward Modelling in Cosmology Alexandre Refregier

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

> ICTP 14.5.2015

Cosmological Probes

<figure>

Gravitational Lensing

Galaxy Clustering

Supernovae

Wide-Field Instruments

CMB		Planck, SPT, ACT, Keck		
VIS/NIR	Imaging Spectro	VST, DES, Pann-STARRS, LSST Euclid, WFIRST, Subaru Boss, Wigglez, DESI, HETDEX		
Radio		LOFAR, GBT, Chimes, BINGO, GMRT, BAORadio, ASKAP, MeerKAT, SKA		

Impact on Cosmology

								Amara	et al. 2008
	Δw _p	ΔW_a	ΔΩ _m	ΔΩ	$\Delta \Omega_{\rm b}$	$\Delta \sigma_8$	Δn _s	Δh	DE FoM
Current+WMAP	0.13	-	0.01	0.015	0.0015	0.026	0.013	0.013	~10
Planck	-	-	0.008	-	0.0007	0.05	0.005	0.007	-
Weak Lensing	0.03	0.17	0.006	0.04	0.012	0.013	0.02	0.1	180
Imaging Probes	0.018	0.15	0.004	0.02	0.007	0.0009	0.014	0.07	400
Stage IV	0.016	0.13	0.003	0.012	0.005	0.003	0.006	0.020	500
Stage IV+Planck	0.01	0.066	0.0008	0.003	0.0004	0.0015	0.003	0.002	1500
Factor Gain	13	>15	13	5	4	17	4	7	150

Stage IV Surveys will challenge all sectors of the cosmological model:

- Dark Energy: *w_p* and *w_a* with an error of 2% and 13% respectively (no prior)
- Dark Matter: test of CDM paradigm, precision of 0.04eV on sum of neutrino masses (with Planck)
- Initial Conditions: constrain shape of primordial power spectrum, primordial non-gaussianity
- Gravity: test GR by reaching a precision of 2% on the growth exponent (*d*ln_m/*d*ln*a*_m)
- \rightarrow Uncover new physics and map LSS at 0<z<2: Low redshift counterpart to CMB surveys

Challenges

Current:

Radiation-Matter transition

High-precision Cosmology era with CMB

Next stage:

Matter-Dark Energy transition

High-precision Cosmology with LSS surveys, different from CMB:

> 3D spherical geometry
> Multi-probe, Multi-experiments
> Non-gaussian, Non-Linear
> Systematics limited
> Large Data Volumes

Bayesian Parameter Estimation

Bayesian inference: $p(\theta|y)=p(y|\theta)\times p(\theta)/P(y)$

In practice: Evaluation of $p(y|\theta)$ is expensive, N_{θ} is large (\geq 7)

► MCMC: produce a sample $\{\theta_i\}$ distributed as $p(\theta|y)$ (e.g. CosmoMC Lewis & Bridle 2002, CosmoHammer, Akeret+ 2012)

Forward Modelling

• Bayesian inference relies on the computation of the likelihood function $p(y|\theta)$

In some situations the likelihood is unavailable or intractable (eg. non-gaussian errors, non-linear measurement processes, complex data formats such as maps or catalogues)

Simulation of mock data sets may however be done through forward modelling

mag	r50	class	ellip
23.5	2.3	0.11	0.23
22.1	1.2	0.89	0.02
24.1	3.2	0.76	0.54
24.2	4.3	0.45	0.65
22.7	3.1	0.91	0.32

Approximate Bayesian Computation

review:Turner & Zandt 2012, see also:Akeret et al. 2015

• Consider reference data set y and simulation based model with parameters θ which can generate simulated data sets x

- Define:
 - Summary statistics S to compress information in the data
 - Distance measure $\rho(S(x), S(y))$ between data sets
 - Threshold ε for the distance measure

Sample prior $p(\theta)$ and accept sample θ^* if $p(S(x), S(y)) < \varepsilon$, where x is generated from model θ^*

ABC approximation to posterior: $p(\theta|y) \simeq p(\theta|\rho(S(x), S(y)) < \varepsilon)$

Use Monte Carlo sampler with sequential ε to sample ABC posterior (eg.ABC Population Monte Carlo)

Gaussian Toy Model

Akeret et al. 2015

Data set y: N samples drawn from gaussian distribution with known σ and unknown mean θ

Summary statistics: $S(x) = \langle x \rangle$

Distance: $\rho(x,y) = |\langle x \rangle - \langle y \rangle|$

Image Modelling

UFig: Ultra Fast Image Generator Bergé et al. 2013, Bruderer et al. 2015 data y: SExtractor catalogue Bertin & Arnouts 1996 model: parametrised distribution of intrinsic galaxy properties

ABCPMC

Akeret et al. 2015

Mahalonobis distance:

$$S(y) = \sqrt{(y - \mu_y)^T \Sigma_y^{-1} (y - \mu_y)}$$
$$S(x) = \sqrt{(x - \mu_y)^T \Sigma_y^{-1} (x - \mu_y)},$$

 $\rho(S(x), S(y)) = ID KS distance$

Monte-Carlo Control Loops

Refregier & Amara 2013

UFig

Bergé et al. 2013; Bruderer et al. 2015

ETH zürich

DES SV

EHzürich

HOPE

Akeret et al. 2014

- Just-In-Time compiler for astrophysical computations
- Makes Python as fast as compiled languages
- HOPE translates a Python function into C++ at runtime
- Only a @jit decorator needs to be added

@hope.jit
def improved(x, y):
 return x**2 + y**4

 Supports numerical features commonly used in astrophysical calculations

For more information see: http://hope.phys.ethz.ch

MCCL: First Implementation

Bruderer et al. 2015

Tolerance Analysis

Bruderer et al. 2015

UFIG/BCC

Busha, Wechsler et al. 2015; Chang et al. 2015

+ Integration of spectroscopy simulations Nord et al. 2015, Nicola et al. 2015

Conclusions

Upcoming and future LSS surveys have great promise for cosmology but will require new data analysis approaches

Forward modelling is a promising approach to analyse complex data sets

► ABC can provide an approximation to the posterior in cases when the likelihood is not available