

INFERRING PAST AND PRESENT COSMIC STRUCTURES

FROM

OBSERVATIONS

Jens Jasche,

Florent Leclercq, Guilhem Lavaux and Benjamin Wandelt

Trieste, 14 Mai 2015

What do we want to do?

□ homogeneous vs. inhomogeneous Universe

homogeneous Universe

 ~ 6 -10 parameter

inhomogeneous Universe

 $\sim 10^7$ parameter

Galaxy survey

Credit: M. Blanton and the Sloan Digital Sky Survey

3D density map

Jasche et al. (2010)

☐ Inference of signals = ill-posed problem!

Noise Incompleteness

Blurring

☐ Inference of signals = ill-posed problem!

Noise Incompleteness

Blurring

No unique recovery!

Bayesian inference

☐ Inference of signals = ill-posed problem!

Noise Incompleteness

No unique recovery!

Bayesian inference

$$\mathcal{P}(s|d) = \mathcal{P}(s) \frac{\mathcal{P}(d|s)}{\mathcal{P}(d)}$$

☐ Inference of signals = ill-posed problem!

Noise Incompleteness

Blurring

No unique recovery!

Bayesian inference

$$\mathcal{P}(s|d) = \mathcal{P}(s) \frac{\mathcal{P}(d|s)}{\mathcal{P}(d)}$$

Complex nonlinear statistics and extremely high dimensional!

Why 4D inference?

- ☐ Physical motivation
 - Complex final state
 - Simple initial state

- ☐ The naive approach:
 - We need a very very large computer!

- ☐ The naive approach:
 - We need a <u>very very large</u> computer!

- ☐ The naive approach:
 - We need a <u>very very large</u> computer!

- ☐ The naive approach:
 - We need a **very very** large computer!

Not practical! Even with approximations!!!!

4D Bayesian inference

- ☐ BORG (Bayesian Origin Reconstruction from Galaxies)
 - Incorporate physical model into Likelihood
 - Approximate LSS formation model
 (Second order Lagrangian perturbation theory)
 - Initial conditions problem

- ☐ Analyzing the SDSS DR7 main sample
 - Explore a 2LPT-Normal-Poissonian distribution
 - 750 Mpc/h box
 - ~3 Mpc/h grid resolution
 - treatment of luminosity dependent bias (6 luminosity bins)
 - Automatic calibration of noise levels via sampling

Credit: M. Blanton and the Sloan Digital Sky Survey

□ 3D ensemble mean fields from 10000 data constrained realizations

Initial density field

$$z = 1000$$

Final density field

$$z = 0$$

SDSS data

$$z = 0$$

- ☐ Full non-linear and non-Gaussian uncertainty quantification
 - Example: voxel-wise standard deviations

Initial density field

$$z = 1000$$

Final density field

$$z = 0$$

Jasche et al. 2014 (arXiv:1409.6308)

- ☐ Inference of plausible cosmic formation histories
 - From 3D to 4D inference

Dynamical information in the SDSS

☐ Inferred 3D velocity fields

Jasche et al. 2014 (arXiv:1409.6308)

Dark matter void in the SDSS

4D analysis of the 2M++ survey

Lavaux and Jasche (in prep)

The Supergalactic plane

kSZ in the 2M++ survey

- ☐ Applying BORG to the 2M++ survey Lavaux (2011)
 - 600 Mpc/h Box (Full sky)
 - Construct kSZ Template

Lavaux and Jasche (in prep)

Comparing Inference schemes

Which scheme performs best?

Ask the data!

$$A_{ij} = \ln \left(\mathcal{P}(d|\delta_i) \right) - \ln \left(\mathcal{P}(d|\delta_j) \right)$$

	ARES	HADES	BORG
ARES	0	-219580.31	-383482.25
HADES	219580.31	0	-163901.94
BORG	383482.25	163901.94	0.

Jasche & Lavaux (in prep)

Summary & Conclusion

- ☐ 4D Bayesian inference
 - From 3D to 4D (Spatio-Temporal inference)
 - Non-linear, non-Gaussian statistics
 - Noise, survey geometry, selection effects and biases
- ☐ 4D Bayesian analyses of the SDSS and 2M++ survey
 - Characterization of initial conditions
 - Higher order statistics
 - Dynamic information, structure formation histories
 - Improved inference in noisy regimes (see Florent's Talk)
 - Predictions and test of physical effects (ISW, kSZ, weak lensing)

The End...

Thank You!

