Relativistic Dynamics in N-body Simulations

based on Phys. Rev. **D88** 103527 (arXiv:1308.6524), Class. Quant. Grav. **31** 234006 (arXiv:1408.3352), and work in progress with D. Daverio, R. Durrer, and M. Kunz

Julian Adamek

ICTP, Trieste, 14.5.2015

FACULTÉ DES SCIENCES Département de physique théorique Newtonian N-body simulations have a long tradition in LSS modelling

- conceptually simple
- "good enough" given the limited precision of past LSS surveys

Models beyond ΛCDM may have relativistic sources of stress-energy perturbations

Newtonian limit not always a good approximation

Increasing data quality imposes new challenge to take into account relativistic effects (e.g. in modelling RSD, WL...)

advantage of conceptual simplicity is lost

Let's go relativistic!

Strategy

choose ansatz for the metric (perturbed FLRW)

$$ds^{2} = a^{2}(\tau) \left[-(1+2\Psi) d\tau^{2} + (1-2\Phi) \delta_{ij} dx^{i} dx^{j} + h_{ij} dx^{i} dx^{j} - 2B_{i} dx^{i} d\tau \right]$$

- metric components are evolved with Einstein's equations $G^{\mu}_{\nu} = 8\pi G T^{\mu}_{\nu}$
- stress-energy tensor is determined by solving the EOM's of all sources of stress-energy

$$T_{\rm m}^{\mu\nu} = \sum_{n} m_{(n)} \frac{\delta^{(3)}(\mathbf{x} - \mathbf{x}_{(n)})}{\sqrt{-g}} \left(-g_{\alpha\beta} \frac{dx_{(n)}^{\alpha}}{d\tau} \frac{dx_{(n)}^{\beta}}{d\tau} \right)^{-\frac{1}{2}} \frac{dx_{(n)}^{\mu}}{d\tau} \frac{dx_{(n)}^{\nu}}{d\tau}$$

• instead of peculiar velocities, use relativistic momentum

$$\mathbf{v} - \mathbf{B} = rac{(1+\Psi+\Phi)\mathbf{p} - rac{1}{2}\mathbb{h}\cdot\mathbf{p}}{\sqrt{m^2 + \mathbf{p}^2}}$$

gives "simple" equations valid for arbitrary $\ensuremath{\mathbf{p}}$:

stress-energy tensor

$$T_{0}^{0} = -\frac{1+3\Phi}{a^{3}} \sum_{n} \delta^{(3)}(\mathbf{x} - \mathbf{x}_{(n)}) \left[\sqrt{m_{(n)}^{2} + \mathbf{p}_{(n)}^{2}} + \mathbf{B} \cdot \mathbf{p}_{(n)} \right]$$
$$\Pi_{ij} \doteq \delta_{k(i}T_{j)}^{k} - \frac{1}{3}\delta_{ij}T_{k}^{k} = \left(\delta_{k(i}\delta_{j)l} - \frac{1}{3}\delta_{ij}\delta_{kl} \right)$$
$$\times \frac{1+3\Phi}{a^{3}} \sum_{n} \delta^{(3)}(\mathbf{x} - \mathbf{x}_{(n)}) \left[\frac{p_{(n)}^{k}p_{(n)}^{l}}{\sqrt{m_{(n)}^{2} + \mathbf{p}_{(n)}^{2}}} + \delta^{km}B_{m}p_{(n)}^{l} \right]$$

geodesic equation

$$\mathbf{p}' = -\left(\mathcal{H} - \Phi'\right)\mathbf{p} - \sqrt{m^2 + \mathbf{p}^2}\nabla\Psi - \nabla\left(\mathbf{B}\cdot\mathbf{p}\right) \\ -\frac{1}{2}\mathbf{h}'\cdot\mathbf{p} + \frac{\mathbf{p}(\mathbf{p}\cdot\nabla\Phi) - \mathbf{p}^2\nabla\Phi}{\sqrt{m^2 + \mathbf{p}^2}} + \frac{1}{2}\frac{\nabla(\mathbf{p}\cdot\mathbf{h}\cdot\mathbf{p}) - \mathbf{p}\cdot\nabla(\mathbf{h}\cdot\mathbf{p})}{\sqrt{m^2 + \mathbf{p}^2}}$$

Einstein's equations at leading order

$$\Delta \Phi - 3\mathcal{H}\Phi' - 3\mathcal{H}^2\Psi = -4\pi Ga^2\delta T_0^0$$

$$\begin{pmatrix} \frac{\partial^2}{\partial x^i \partial x^j} - \frac{1}{3} \delta_{ij} \Delta \end{pmatrix} (\Phi - \Psi) = 8\pi G a^2 \Pi_{ij}^{(S)} \\ B'_{(i,j)} + 2\mathcal{H} B_{(i,j)} = 8\pi G a^2 \Pi_{ij}^{(V)} \\ \frac{1}{2} h''_{ij} + \mathcal{H} h'_{ij} - \frac{1}{2} \Delta h_{ij} = 8\pi G a^2 \Pi_{ij}^{(T)}$$

Including "shortwave corrections" ...

$$(1+4\Phi)\Delta\Phi - 3\mathcal{H}\Phi' - 3\mathcal{H}^2\Psi + \frac{3}{2}\left(\nabla\Phi\right)^2 = -4\pi Ga^2\delta T_0^0$$

$$\left(\frac{\partial^2}{\partial x^i \partial x^j} - \frac{1}{3}\delta_{ij}\Delta\right) \left[\left(\Phi - \Psi\right)\left(1 + \Phi - \Psi\right) + \Phi^2\right] + \\ B'_{(i,j)} + 2\mathcal{H}B_{(i,j)} + \\ \frac{1}{2}h''_{ij} + \mathcal{H}h'_{ij} - \frac{1}{2}\Delta h_{ij} + \\ 2\Psi\Phi_{,ij} - \frac{2}{3}\delta_{ij}\Psi\Delta\Phi - (\Phi - \Psi)_{,i}\left(\Phi - \Psi\right)_{,j} + \\ \frac{1}{3}\delta_{ij}\delta^{kl}\left(\Phi - \Psi\right)_{,k}\left(\Phi - \Psi\right)_{,l} = 8\pi Ga^2\Pi_{ij}$$

Summary

- N-body simulations within a GR framework are feasible
- unified relativistic treatment is a clear, logical and transparent way to address the most general observables with minimal restrictions on the cosmological model
- technology should be useful for simulations with relativistic sources (dynamical DE, neutrinos, ...)