

Testing Gravity in the Cosmic Web

Bridget Falck Institute of Cosmology and Gravitation University of Portsmouth, UK

Modifying General Relativity

What caused the late-time acceleration?

If it is a cosmological constant, it is very small compared to the scale of gravity: $\Lambda \approx 10^{-120} M_{pl}^{2}$

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R [+?] = 8\pi G T_{\mu\nu} [-\Lambda g_{\mu\nu}?]$$

Change: geometry – "modified gravity", matter – "dark energy"

Screening the Fifth Force

- GR well-tested on small scales but not cosmological scales
 - Chameleon: in f(R) gravity, make mass of scalar field large in high density <u>environments</u>
 - Symmetron: change scalar field coupling to matter
 - Vainshtein: in massive gravity, galileon, and braneworld (DGP) models, derivative self-interactions hide fifth force, depending on <u>dimensionality</u> of the system (see Bloomfield, Burrage, & Davis 2014)
- I will look at the cosmic web and environmental dependence of *chameleon* and *Vainshtein* screening

 (BF+ 2014, 1404.2206; BF+ 2015, 1503.06673)

Simulations

• Cosmic web of dark matter particles identified with ORIGAMI (BF+ 2012, 1201.2353)

The ORIGAMI Cosmic Web

Find the phase-space folds by looking for simulation particles that are out of order along orthogonal axes

(Falck, Neyrinck, & Szalay 2012, 1201.2353)

Halos collapse along 3 axes, Filaments 2, Walls 1, and Voids 0

Bridget Falck

Halo Filament Wall Void

Halo Filament Wall Void

Halo Filament Wall a.,

Vainshtein Screening of Dark Matter Particles

Vainshtein Screening of Dark Matter Particles

Vainshtein Screening of Dark Matter Particles

Vainshtein

Chameleon

Vainshtein Screening Profile

Fifth Force / Gravitational Force

Screening vs. Halo Mass

Vainshtein

Chameleon

Linear (unscreened) $\Delta_M = 0.2$ (red), 0.11 (purple), 0.03 (blue)

Linear (unscreened) $\Delta_M = 0.33$

(see also Schmidt 2010, 1003.0409)

Chameleon Screening Profiles

Fifth Force / Gravitational Force

Vainshtein

Screening vs. Environmental Density

Vainshtein

Chameleon

Linear (unscreened) $\Delta_M = 0.2$ (red), 0.11 (purple), 0.03 (blue)

Linear (unscreened) $\Delta_M = 0.33$

(see also Zhao et al. 2011, 1105.0922)

What about voids?

But single-stream regions not surrounded on all sides by walls & filaments – *single-stream voids percolate* (Falck & Neyrinck 2015, 1410.4751)

Summary

- ORIGAMI identifies cosmic web by finding folds in phase space
 (Falck, Neyrinck, & Szalay 2012, 1201.2353)
- The Vainshtein mechanism depends on cosmic web morphology of dark matter particles, not mass or environment

 (Falck, Koyama, Zhao, & Li 2014, 1404.2206)
- The *chameleon mechanism* depends on mass and environment, not cosmic web
 - (Falck, Koyama, & Zhao 2015, 1503.06673)
- Single-stream regions (voids) *percolate*, not surrounded by walls
 (Falck & Neyrinck 2015, 1410.4751)