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Gravitational clustering of dark matter

Evolution of collisionless particles - Vlasov equation:

a _of _
E—a—T-i-— p-Vf —amVe-V,f =0,

and V2¢ = 3/2H,0.
Integral moments of the distribution function:

mass density field & mean streaming velocity field
3, Di
3 [ 3 Jd°p Bof (x.p)
p(X) = ma /dpfx,p, ViX:—7
) ) =) Jdpf(x.p)
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Gravitational clustering of dark matter

Evolution of collisionless particles - Vlasov equation:

o 1 - B
E_E)_T—ng'vf amV ¢ V,J—O,

and V2¢ = 3/2H,,6.
Eulerian framework - fluid approximation:

150

o0 (1 —

5 +V-[(1+4d)v]=0

81)1' . 1

E +Hvi+v-Vv,=—-V;¢p — ;Vz(ﬂaz]),

where o0;; is the velocity dispersion.
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Gravitational clustering of dark matter

Evolution of collisionless particles - Vlasov equation:

o 1 - B
E_E)_T—ng'vf amV ¢ V,J—O,

and V2¢ = 3/2H,,6.
Eulerian framework - pressureless perfect fluid approximation:

06

2 (1 —
87+v [(1+d)v]=0
%—i—Hv,-—i—v-Vv,-:—Viqb.
or

Irrotational fluid: 0 =V - v.

Gravitational clustering of dark matter
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Gravitational clustering of dark matter

Evolution of collisionless particles - Vlasov equation:

%za_f_F%p.Vf—aqub-Vm’:O,

dr Ot

and V2¢ = 3/2H,,6.
EFT approach introduces a tress tensor for the long-distance fluid:

06

2 (1 -

7. +V-[(1+9)v]=0

8\/’,‘ 1

E +Hvi+Vv-Vvi=—-V;pp — ;Vj(Tij),

[Carrasco et al. 2012]

with given as 7; = pody + c25pd; + 0(0%5,...)
-derived by smoothing the short scales in the fluid with

the smoothing filter W (A).

Gravitational clustering of dark matter
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EFTofLSS one-loop results for DM
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[first by Carrasco et al, 2012]
» Well defined and convergent expansion in &/ kNL (one parameter).

» IR resummation (Lagrangian approach) - BAO peak! [Scnatore ctal, 2014
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Galaxies and biasing of dark matter halos

Galaxies form at high density peaks of

initial matter density: Z ,,,,,,,,,,,,,,,,,,,,,,, [da o
rare peaks exhibit higher clustering! . l ! ‘lm h H ‘ M )WH | “ l
| W |
Sl b il Y g
108 oMain ° ,
% 2 7] ) 6 8 10
A~1/

» Tracer detriments the amplitude:
Py(k) = b?Py, (k) +

» Understanding bias is crucial for
understanding the galaxy
clustering

Power spectrum P(k) [(h~!Mpc)3]

‘ ‘ 0.1
k [h Mpe] [Tegmark et al, 2006]
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Earlier approaches to halo biasing

Local biasing model: halo field is a function of just DM density field
511 = 655 + c52 (52 - <52>) + 65353 —+ ...

[Fry & Gaztanaga, 1993]
Non-local (in space) relation of the halo density field to the dark matter

on(x) = c56(x) + cs2 52(X) + c530° (x) [McDonald & Roy, 2008]
+ 252 (X) + ¢520(x)s%(x) + cpb(x) + cus(x)2(x) + cg5”(x)
+ce+ ...,

with effective ('"Wilson'") coefficients ¢; and variables:

5500 = 000(x) — K50, 153 = 0y — LOK0(x) sy (x).

V(x) = [00x) = 6(0)] ~ Zs(x)? + 5-6(9%

where ¢ is the gravitational potential, and white noise (stochasticity) e.
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Effective field theory of biasing

Non-local (space and time) relation of the halo density field to the dark matter
t [Senatore 2014]
On(x, 1) =~ / di H(?) [es(t,t') : 6(xp, 1) :
+ep(t,t) 6(xn, )% +ep(t, 1) 5% (xq,t)
+ess(t,t) 2 6(xp, t)?  +ese (t,8)  6(xp, ¢)s* (xp,t) 1 + ...
+ce(t, 1) e(xp, ') + Ces(t, 1) : e(xp, t)5(xn, ') 1 + ...

82
+Cos(t,1") 750 (xa, t') + ... ]
kM

Novice consideration of non-local in time formation, which depends on fields
evaluated on past history on past path:

T

xa(x,7,7") :x—/ dr" v(r" xa(x, 7, 7"))

7.l
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Effective field theory of biasing

New physical scale &y, ~ 2 (4££69) /3 which can be different then ky;.
We look at the correlations at k << ky,.

Each order in perturbation theory we get new bias coefficients:
On(k,t) = cs51 [6(1)(k, t) + flow terms]
+cs52 [5(2) (k,t) + flow terms] +...

Emergence of degeneracy: choice of most convenient basis

Turns out that at one loop 2-pt and tree level 3-pt function LIT and non-LIT
are degenerate- this is no longer the case at higher loops or when 4-pt function
is considered.
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Effective field theory of biasing

Independent operators in the Basis of Descendants':

(1)st order: {(Cgll) }
(2)nd order: {(C((fl), (C(%), Cg)g}
3)

71’

) 3
(3)rd order: {Ca 52,10 82,20 8310 63 2,2

(C((SQ)? Céf’}i, c®  c® c¥ c¥ C(s)}
Stochastic: {(C67 (C((Si,)l}

1—loop pl—loop ptree ptree tree Tt
We compa}re If’hh s P s Bhns thm, By stat}stlcs .
Renormalization! (takes care of short distance physics has at long distances of
interest)

In practice, ¢s 1 is a bare parameter, the sum of a finite part and a counterterm:

Z'6,1 = Z’6,1, finite + &6,1, counter

After renormalization we end up with using 7 finite bias parameters b;
(coefficients in EFT).
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Observables: th, Phha mama thma thh

Example: Halo-Matter Power Spectrum (one loop)

mMmsz@(mxm+2/k§) FP(k— q,q)8) (k- q,9) Pri(q)Pu ([ — g

d3
3Py, (k) / g

)
#b0al0)2 [ S EO = g.0) (EO - 0.0 -8, (- 0.0)

X P11(q)P11(|k —q|)

3
+b5,3(f)3P11(k)/ (L;T;]g <E§3§s(ka _qaq)) P11(q)

+b52(t)2/%Fs@)(k—q,q)Pn(‘])P11(|k—‘I|)

n (b (1) — 2(2m)cd ) (¢ )bé,l(t))

(Fs(3) <k7 —-q, q) + /c\((s?l),s(k7 -4 q)) P]'l (q)>

k2

P11 (k)
i
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Error estimates and bias fits

Error bars of the theory are given by the higher loop estimates:
3

€.g. Ath ~ (271‘) bl <lﬁ> Pll(k).

This determines the theory reach kpqx.

kmax [h/Mpc] bin0 binl Fits to N-body simulations:
mm 022—0.31 0.22— 031 T T T T
hm 0.24 —0.35 0.22 —0.35 + [+ [ = [—]— [o.0372] 1.000
hh 0.19-0.32 0.17—0.30 ({51 10062 109937
mmm 0.14 — 0.22 0.14 — 0.22 + + | ==+ |0.730 | 0.9724
hmm 0.13—-0.22 0.13 —0.22 I I : t : 2222 g:z;;
hhm 0.13 —-0.22 0.13 -0.22 T+ =+ T+ 110 To0o1is
hhh 0.13—0.21 0.13-0.21 + [+ [+ [+ [+ ]1.13 Jo.1105

Most of the constraint comes form the 3-pt function.
Fits to 3-pt and 4-pt function would enable full predictivity for 2-pt function.
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EFT of biased tracers: bias fits

Error bars of the theory are given by the higher loop estimates:

3
e.g. APy, ~ (27) by (,%) P (k).
This determines the theory reach kpax.

bin0 binl
bs1 1.00 £0.01 1.32 £ 0.01
bs,2 0.23+0.01 0.52+0.01
bs3 0.48+0.12 0.66 +0.13
bs2 0.28+£0.01 0.30+0.01
be, 0.724+0.16 0.27+0.17
bse 0.31 +£0.08 0.76 +0.17
Conste | 5697 108 10821 £ 169
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Halo Power Spectrum results (bin 1)

Comparison to N-body simulations: Power Spectrum fitted up to
k < 0.26Mpc/h and Bispectrum up to £ < 0.11Mpc/h
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Halo Bispectrum results (bin 1)

Comparison to N-body simulations: Power Spectrum fitted up to
k < 0.26Mpc/h and Bispectrum up to £ < 0.11Mpc/h
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Bispectrum p-values

Characteristic sharp drop in the p-value after the
maximal Bispectrum scale kmax 5

1, > ry r ry > ry |

0.100} 1
E
@ 0.010, P00 ]
1 bin_1
Q,
bin 2
0.001} §
107%% | | | B
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Within these scales our EFT results fit the data well, and then fail after
crossing this scales.
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Adding baryonic effects

- baryon effects (on DM) in EFT framework recently studied [Lewandowski et al. 2014]
- baryons at large distances described as additional fluid component (short distance
physics is encoded in an effective stress tensor)

?p(xp, 1)

H()? + s, (1,2") wp 8 (xq15)

Sp(x, 1) =~ /tdt’ H(!) |:Eaz¢(t,t')

B OV (xp ., 1 _ Ol (xq15, 1)
+ Copi (t,8") we M + cal_vé(h ) wy Zp b T

H(1") H(t")
_ D9 (xn, 1) 8' p(xn, 1)
+C3i3j¢3ia’¢(t’ t) ;—I(t’)z H()?

+ Ce. (t, 1) We €c(xpes ') + T, (8, 17) Wy €5 (xpp, 1)

D2 ¢(xp, 1)

02¢(xq,1")
H()? &

+66682¢(I7 t,) We EC(xﬂcvt,) H(l/)Z

+Ce,024(t, 1) wp ep(xpy, 1)
where xy) is defined by Poisson equation and:

T T
xﬂb(x7 7, T,) :x_/ dr" vb(Tllvxﬂ(x7 T, T//)) ’ xflL’(x7 T, T/) :x_/ dr"” vC(T,,axﬂ(xv T, T”))
T v
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Adding Non-Gaussianities

We assume that non-G. correlations are present only in the initial conditions
and effect can be described by the squeezed limit, ki, < kg of correlation functions.

After horizon re-rentry, but still early enough to neglect all gravitational
non-linearities, the primordial density fluctuation are given by

6W (ks tin) = g (ks) + NLA(KL, tin)Og (ks — ki, tin) ,

~ 2
where ¢(kr, tin) = %Z‘E,.Q”)' = ; ® (%) “ 0g (kr, tin) and where T'(k) is the transfer function.
in) kZ

In the presence of primordial non-Gaussianities, additional components:

t ~ ~ 2 /
(X, 1) 2 fur p(xpr (L, tin), tin) / dat H(t') [E ¢(t,1) + 58‘Z¢(t, ) % +.. ]

+ 1,2 &(xﬂ(t,tm),tin)Q/ di' H(t') [ 5, t)+662 (m)m } ...

H(t')?
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» EFT gives a consistent expansion in (k/kx1)?, and for halos also in
(k/km)?, nonlocal effect in time and space included

» EFT approach is well suited for galaxy clustering (one-loop power
spectra k ~ 0.3h/Mpc, tree level bispectra k ~ 0.1 — 0.154/Mpc )

» Consistent description of five different observables (Pnm, Phh, Bhmms
Bhhm, Bhhh) With seven bias parameters.
Outlook:

» Higher loops calculations in order to extend the kpax, and higher
statistics (e.g. 4-pt function - great potential)

» Calculation of observables taking into account baryons,
non-Gaussianities and RSD ...

» Generalization of the formalism in order include GR effects (become
important as surveys grow).
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