Halo Power Spectrum and Bispectrum

in the Effective Field Theory of Large Scale Structures

Zvonimir Vlah

Stanford University & SLAC

with:

Raul Angulo (CEFCA), Matteo Fasiello (Stanford), Leonardo Senatore (Stanford)

- Clustering of Dark Matter in EFT
- Clustering of DM Halos
 - Earlier approaches
 - EFT approach
- Halo Power Spectrum and Bispectrum Results
- Adding baryonic effects and non-Gaussianities
- Summary

Evolution of collisionless particles - Vlasov equation:

$$\frac{df}{d\tau} = \frac{\partial f}{\partial \tau} + \frac{1}{m} \mathbf{p} \cdot \nabla f - am \nabla \phi \cdot \nabla_p f = 0,$$

and $\nabla^2 \phi = 3/2 \mathcal{H} \Omega_m \delta$.

Integral moments of the distribution function:

mass density field

mean streaming velocity field

$$p(\mathbf{x}) = ma^{-3} \int d^3p f(\mathbf{x}, \mathbf{p}), \qquad \qquad v_i(\mathbf{x}) = \frac{\int d^3p \frac{p_i}{am} f(\mathbf{x}, \mathbf{p})}{\int d^3p f(\mathbf{x}, \mathbf{p})},$$

&

Evolution of collisionless particles - Vlasov equation:

$$\frac{df}{d\tau} = \frac{\partial f}{\partial \tau} + \frac{1}{m} \mathbf{p} \cdot \nabla f - am \nabla \phi \cdot \nabla_p f = 0,$$

and $\nabla^2 \phi = 3/2 \mathcal{H} \Omega_m \delta$.

Eulerian framework - fluid approximation:

$$\begin{aligned} \frac{\partial \delta}{\partial \tau} + \nabla \cdot \left[(1+\delta) \mathbf{v} \right] &= 0\\ \frac{\partial v_i}{\partial \tau} + \mathcal{H} v_i + \mathbf{v} \cdot \nabla v_i &= -\nabla_i \phi - \frac{1}{\rho} \nabla_i (\rho \sigma_{ij}), \end{aligned}$$

where σ_{ij} is the velocity dispersion.

Evolution of collisionless particles - Vlasov equation:

$$\frac{df}{d\tau} = \frac{\partial f}{\partial \tau} + \frac{1}{m} \mathbf{p} \cdot \nabla f - am \nabla \phi \cdot \nabla_p f = 0,$$

and $\nabla^2 \phi = 3/2 \mathcal{H} \Omega_m \delta$.

Eulerian framework - pressureless perfect fluid approximation:

$$\frac{\partial \delta}{\partial \tau} + \nabla \cdot \left[(1+\delta) \mathbf{v} \right] = 0$$
$$\frac{\partial v_i}{\partial \tau} + \mathcal{H} v_i + \mathbf{v} \cdot \nabla v_i = -\nabla_i \phi.$$

Irrotational fluid: $\theta = \nabla \cdot \mathbf{v}$.

Evolution of collisionless particles - Vlasov equation:

$$\frac{df}{d\tau} = \frac{\partial f}{\partial \tau} + \frac{1}{m} \mathbf{p} \cdot \nabla f - am \nabla \phi \cdot \nabla_p f = 0,$$

and $\nabla^2 \phi = 3/2 \mathcal{H} \Omega_m \delta$.

EFT approach introduces a tress tensor for the long-distance fluid:

$$\frac{\partial \delta}{\partial \tau} + \nabla \cdot \left[(1+\delta) \mathbf{v} \right] = 0$$

$$\frac{\partial v_i}{\partial \tau} + \mathcal{H} v_i + \mathbf{v} \cdot \nabla v_i = -\nabla_i \phi - \frac{1}{\rho} \nabla_j(\tau_{ij}),$$

with given as $\tau_{ij} = p_0 \delta_{ij} + c_s^2 \delta \rho \delta_{ij} + O(\partial^2 \delta, ...)$ [Carrasco et al. 2012] -derived by smoothing the short scales in the fluid with the smoothing filter $W(\Lambda)$.

EFTofLSS one-loop results for DM

$$P_{\text{EFT-1-loop}} = P_{11} + P_{1\text{-loop}} - 2(2\pi)c_{s(1)}^2 \frac{k^2}{k_{\text{NL}}^2} P_{11}$$

- Well defined and convergent expansion in $k/k_{\rm NL}$ (one parameter).
- ► IR resummation (Lagrangian approach) BAO peak! [Senatore et al, 2014]

Galaxies and biasing of dark matter halos

Galaxies form at high density peaks of initial matter density:

rare peaks exhibit higher clustering!

- Tracer detriments the amplitude: $P_g(k) = b^2 P_m(k) + \dots$
- Understanding bias is crucial for understanding the galaxy clustering

Earlier approaches to halo biasing

Local biasing model: halo field is a function of just DM density field $\delta_{\rm h} = c_{\delta}\delta + c_{\delta^2} (\delta^2 - \langle \delta^2 \rangle) + c_{\delta^3}\delta^3 + \dots$

[Fry & Gaztanaga, 1993]

Non-local (in space) relation of the halo density field to the dark matter

$$\begin{split} \delta_{\rm h}(\mathbf{x}) &= c_{\delta}\delta(\mathbf{x}) + c_{\delta^2}\delta^2(\mathbf{x}) + c_{\delta^3}\delta^3(\mathbf{x}) & [\text{McDonald & Roy, 2008}] \\ &+ c_{s^2}s^2(\mathbf{x}) + c_{\delta s^2}\delta(\mathbf{x})s^2(\mathbf{x}) + c_{\psi}\psi(\mathbf{x}) + c_{st}s(\mathbf{x})t(\mathbf{x}) + c_{s^3}s^3(\mathbf{x}) \\ &+ c_{\epsilon}\epsilon + \dots, \end{split}$$

with effective ('Wilson') coefficients c_l and variables:

$$s_{ij}(\mathbf{x}) = \partial_i \partial_j \phi(\mathbf{x}) - \frac{1}{3} \delta_{ij}^{\mathrm{K}} \delta(\mathbf{x}), \qquad t_{ij}(\mathbf{x}) = \partial_i v_j - \frac{1}{3} \delta_{ij}^{\mathrm{K}} \theta(\mathbf{x}) - s_{ij}(\mathbf{x}),$$

$$\psi(\mathbf{x}) = [\theta(\mathbf{x}) - \delta(\mathbf{x})] - \frac{2}{7} s(\mathbf{x})^2 + \frac{4}{21} \delta(\mathbf{x})^2,$$

where ϕ is the gravitational potential, and white noise (stochasticity) ϵ .

Effective field theory of biasing

Non-local (space and time) relation of the halo density field to the dark matter

$$\begin{split} \delta_{h}(\mathbf{x},t) &\simeq \int^{t} dt' \ H(t') \ \left[\bar{c}_{\delta}(t,t') \ : \delta(\mathbf{x}_{\mathrm{fl}},t') \ : \\ &+ \bar{c}_{\delta^{2}}(t,t') \ : \delta(\mathbf{x}_{\mathrm{fl}},t')^{2} \ : + \bar{c}_{s^{2}}(t,t') \ : s^{2}(\mathbf{x}_{\mathrm{fl}},t') \ : \\ &+ \bar{c}_{\delta^{3}}(t,t') \ : \delta(\mathbf{x}_{\mathrm{fl}},t')^{3} \ : + \bar{c}_{\delta^{2}}(t,t') \ : \delta(\mathbf{x}_{\mathrm{fl}},t')s^{2}(\mathbf{x}_{\mathrm{fl}},t') \ : + \dots \\ &+ \bar{c}_{\epsilon}(t,t') \ \epsilon(\mathbf{x}_{\mathrm{fl}},t') + \bar{c}_{\epsilon\delta}(t,t') \ : \epsilon(\mathbf{x}_{\mathrm{fl}},t')\delta(\mathbf{x}_{\mathrm{fl}},t') \ : + \dots \\ &+ \bar{c}_{\partial^{2}\delta}(t,t') \ \frac{\partial^{2}_{x_{\mathrm{fl}}}}{k_{M}^{2}}\delta(\mathbf{x}_{\mathrm{fl}},t') + \dots \\ \end{split}$$

Novice consideration of non-local in time formation, which depends on fields evaluated on past history on past path:

$$\boldsymbol{x}_{\mathrm{fl}}(\boldsymbol{x},\tau,\tau') = \boldsymbol{x} - \int_{\tau'}^{\tau} d\tau'' \, \boldsymbol{v}(\tau'',\boldsymbol{x}_{\mathrm{fl}}(\boldsymbol{x},\tau,\tau''))$$

Effective field theory of biasing

New physical scale $k_M \sim 2\pi \left(\frac{4P_i \rho_0}{3 M}\right)^{1/3}$, which can be different then k_{NL} . We look at the correlations at $k \ll k_M$.

Each order in perturbation theory we get new bias coefficients:

$$\delta_{\rm h}(k,t) = c_{\delta,1} \left[\delta^{(1)}(k,t) + \text{flow terms} \right] + c_{\delta,2} \left[\delta^{(2)}(k,t) + \text{flow terms} \right] + \dots$$

Emergence of degeneracy: choice of most convenient basis

Turns out that at one loop 2-pt and tree level 3-pt function LIT and non-LIT are degenerate- this is no longer the case at higher loops or when 4-pt function is considered.

Effective field theory of biasing

Independent operators in the Basis of Descendants':

(1)st order:
$$\left\{ \mathbb{C}_{\delta,1}^{(1)} \right\}$$

(2)nd order: $\left\{ \mathbb{C}_{\delta,1}^{(2)}, \mathbb{C}_{\delta,2}^{(2)}, \mathbb{C}_{\delta^{2},1}^{(2)} \right\}$
(3)rd order: $\left\{ \mathbb{C}_{\delta,1}^{(3)}, \mathbb{C}_{\delta,2}^{(3)}, \mathbb{C}_{\delta,3}^{(3)}, \mathbb{C}_{\delta^{2},1}^{(3)}, \mathbb{C}_{\delta^{3},1}^{(3)}, \mathbb{C}_{\delta,3_{c_{s}}}^{(3)}, \mathbb{C}_{s^{2},2}^{(3)} \right\}$
Stochastic: $\left\{ \mathbb{C}_{\epsilon}, \mathbb{C}_{\delta\epsilon,1}^{(1)} \right\}$

We compare P_{hh}^{1-loop} , P_{hm}^{1-loop} , B_{hhh}^{tree} , B_{hhm}^{tree} , B_{hmm}^{tree} statistics Renormalization! (takes care of short distance physics has at long distances of interest)

In practice, $\tilde{c}_{\delta,1}$ is a bare parameter, the sum of a finite part and a counterterm:

$$\tilde{c}_{\delta,1} = \tilde{c}_{\delta,1, \text{ finite}} + \tilde{c}_{\delta,1, \text{ counter}},$$

After renormalization we end up with using 7 finite bias parameters b_i (coefficients in EFT).

Observables: P_{hm}, P_{hh}, B_{hmm}, B_{hhm}, B_{hhm}

Example: Halo-Matter Power Spectrum (one loop)

$$\begin{split} P_{hm}(k) = & b_{\delta,1}(t) \left(P_{11}(k) + 2 \int \frac{d^3q}{(2\pi)^3} F_s^{(2)}(k-q,q) \, \widehat{c}_{\delta,1,s}^{(2)}(k-q,q) \, P_{11}(q) P_{11}(|k-q| + 3P_{11}(k) \int \frac{d^3q}{(2\pi)^3} \left(F_s^{(3)}(k,-q,q) + \widehat{c}_{\delta,1,s}^{(3)}(k,-q,q) \right) P_{11}(q) \right) \\ & + b_{\delta,2}(t) \, 2 \int \frac{d^3q}{(2\pi)^3} F_s^{(2)}(k-q,q) \left(F_s^{(2)}(k-q,q) - \widehat{c}_{\delta,1,s}^{(2)}(k-q,q) \right) \\ & \times P_{11}(q) P_{11}(|k-q|) \\ & + b_{\delta,3}(t) 3P_{11}(k) \int \frac{d^3q}{(2\pi)^3} \left(\widehat{c}_{\delta,3,s}^{(3)}(k,-q,q) \right) P_{11}(q) \\ & + b_{\delta^2}(t) 2 \int \frac{d^3q}{(2\pi)^3} F_s^{(2)}(k-q,q) P_{11}(q) P_{11}(|k-q|) \\ & + \left(b_{c_s}(t) - 2(2\pi) c_{s(1)}^2(t) b_{\delta,1}(t) \right) \frac{k^2}{k_{\rm NL}^2} P_{11}(k) \end{split}$$

Error estimates and bias fits

Error bars of the theory are given by the higher loop estimates:

e.g.
$$\Delta P_{hm} \sim (2\pi) b_1 \left(\frac{k}{k_{\rm NL}}\right)^3 P_{11}(k)$$
.
This determines the theory reach $k_{\rm max}$.

$k_{\max} \left[h/\mathrm{Mpc} \right]$	bin0	bin1	Fits to N-body simulations:						
	0.22 - 0.31	0.22 - 0.31	bin_1: $k_{min}=0.04h/Mpc$, $k_{max}=0.11h/Mpc$						
mm			hm	hh	hmm	hhm	hhh	χ^2	р
hm	0.24 - 0.35	0.22 - 0.35	+	+	-	-	I	0.0372	1.000
hh	0.10 0.32	0.17 0.30	+	+	+	-	-	0.662	0.9937
nn	0.13 - 0.02	0.11 - 0.50	+	+	I	+	-	0.615	0.9982
ттт	0.14 - 0.22	0.14 - 0.22	+	+	-	-	+	0.730	0.9724
hmm	0.13 - 0.22	0.13 - 0.22	+	+	+	+	ł	0.849	0.8911
1.1	0.12 0.99	0.12 0.00	+	+	+	+	+	0.846	0.8963
nnm	0.13 - 0.22	0.13 - 0.22	+	+	-	/+/	+	1.17	0.09115
hhh	0.13 - 0.21	0.13 - 0.21	+	+	+(,+ ,	+	1.13	0.1105

Most of the constraint comes form the 3-pt function. Fits to 3-pt and 4-pt function would enable full predictivity for 2-pt function.

EFT of biased tracers: bias fits

Error bars of the theory are given by the higher loop estimates: e.g. $\Delta P_{hm} \sim (2\pi) b_1 \left(\frac{k}{k_{\rm NL}}\right)^3 P_{11}(k)$. This determines the theory reach $k_{\rm max}$.

	bin0	bin1				
$b_{\delta,1}$	1.00 ± 0.01	1.32 ± 0.01				
$b_{\delta,2}$	0.23 ± 0.01	0.52 ± 0.01				
$b_{\delta,3}$	0.48 ± 0.12	0.66 ± 0.13				
b_{δ^2}	0.28 ± 0.01	0.30 ± 0.01				
b_{c_s}	0.72 ± 0.16	0.27 ± 0.17				
$b_{\delta\epsilon}$	0.31 ± 0.08	0.76 ± 0.17				
Const_{ϵ}	5697 ± 108	10821 ± 169				

Halo Power Spectrum results (bin 1)

Comparison to N-body simulations: Power Spectrum fitted up to k < 0.26Mpc/h and Bispectrum up to k < 0.11Mpc/h

Halo Bispectrum results (bin 1)

Comparison to N-body simulations: Power Spectrum fitted up to k < 0.26Mpc/h and Bispectrum up to k < 0.11Mpc/h

Effective field theory of biasing

Bispectrum p-values

Characteristic sharp drop in the p-value after the maximal Bispectrum scale $k_{\max,B}$

Within these scales our EFT results fit the data well, and then fail after crossing this scales.

Adding baryonic effects

- baryon effects (on DM) in EFT framework recently studied [Lewandowski et al. 2014]
- baryons at large distances described as additional fluid component (short distance physics is encoded in an effective stress tensor)

$$\begin{split} \delta_{h}(\mathbf{x},t) &\simeq \int^{t} dt' \ H(t') \left[\bar{c}_{\partial^{2}\phi}(t,t') \ \frac{\partial^{2}\phi(\mathbf{x}_{\mathrm{fl}},t')}{H(t')^{2}} + \bar{c}_{\delta_{b}}(t,t') \ w_{b} \ \delta_{b}(\mathbf{x}_{\mathrm{fl}b}) \right. \\ &+ \bar{c}_{\partial_{l}v_{c}^{i}}(t,t') \ w_{c} \ \frac{\partial_{i}v_{c}^{i}(\mathbf{x}_{\mathrm{fl}c},t')}{H(t')} + \bar{c}_{\partial_{l}v_{b}^{i}}(t,t') \ w_{b} \ \frac{\partial_{i}v_{b}^{i}(\mathbf{x}_{\mathrm{fl}b},t')}{H(t')} \\ &+ \bar{c}_{\partial_{i}\partial_{j}\phi\partial^{i}\partial^{j}\phi}(t,t') \ \frac{\partial_{i}\partial_{j}\phi(\mathbf{x}_{\mathrm{fl}},t')}{H(t')^{2}} \frac{\partial^{i}\partial^{j}\phi(\mathbf{x}_{\mathrm{fl}},t')}{H(t')^{2}} + \dots \\ &+ \bar{c}_{\epsilon_{c}}(t,t') \ w_{c} \ \epsilon_{c}(\mathbf{x}_{\mathrm{fl}c},t') + \bar{c}_{\epsilon_{b}}(t,t') \ w_{b} \ \epsilon_{b}(\mathbf{x}_{\mathrm{fl}b},t') \\ &+ \bar{c}_{\epsilon_{c}\partial^{2}\phi}(t,t') \ w_{c} \ \epsilon_{c}(\mathbf{x}_{\mathrm{fl}c},t') \frac{\partial^{2}\phi(\mathbf{x}_{\mathrm{fl}},t')}{H(t')^{2}} + \bar{c}_{\epsilon_{b}\partial^{2}\phi}(t,t') \ w_{b} \ \epsilon_{b}(\mathbf{x}_{\mathrm{fl}b},t') \frac{\partial^{2}\phi(\mathbf{x}_{\mathrm{fl}},t')}{H(t')^{2}} \dots \bigg] \end{split}$$

where x_{fl} is defined by Poisson equation and:

$$\mathbf{x}_{\mathrm{fl}b}(\mathbf{x},\tau,\tau') = \mathbf{x} - \int_{\tau'}^{\tau} d\tau'' \, \mathbf{v}_b(\tau'',\mathbf{x}_{\mathrm{fl}}(\mathbf{x},\tau,\tau'')) \,, \quad \mathbf{x}_{\mathrm{fl}c}(\mathbf{x},\tau,\tau') = \mathbf{x} - \int_{\tau'}^{\tau} d\tau'' \, \mathbf{v}_c(\tau'',\mathbf{x}_{\mathrm{fl}}(\mathbf{x},\tau,\tau'')) \,,$$

Adding Non-Gaussianities

We assume that non-G. correlations are present only in the initial conditions and effect can be described by the squeezed limit, $k_L \ll k_S$ of correlation functions.

After horizon re-rentry, but still early enough to neglect all gravitational non-linearities, the primordial density fluctuation are given by

$$\delta^{(1)}(\mathbf{k}_S, t_{\rm in}) \simeq \delta_g(\mathbf{k}_S) + f_{\rm NL} \tilde{\phi}(\mathbf{k}_L, t_{\rm in}) \delta_g(\mathbf{k}_S - \mathbf{k}_L, t_{\rm in}) ,$$

where $\tilde{\phi}(\mathbf{k}_L, t_{\rm in}) = \frac{3}{2} \frac{H_0^2 \Omega_m}{D(t_{\rm in})} \frac{1}{k_s^2 T(k)} \left(\frac{k_L}{k_s}\right)^{\alpha} \delta_g(\mathbf{k}_L, t_{\rm in})$ and where T(k) is the transfer function. In the presence of primordial non-Gaussianities, additional components:

$$\delta_{h}(\mathbf{x},t) \simeq f_{\rm nl} \,\tilde{\phi}(\mathbf{x}_{\rm fl}(t,t_{\rm in}),t_{\rm in}) \,\int^{t} dt' \,H(t') \,\left[\bar{c} \,\tilde{\phi}(t,t') + \bar{c} \frac{\tilde{\phi}}{\partial^{2}\phi}(t,t') \,\frac{\partial^{2}\phi(\mathbf{x}_{\rm fl},t')}{H(t')^{2}} + \ldots\right] \\ + f_{\rm nl}^{2} \,\tilde{\phi}(\mathbf{x}_{\rm fl}(t,t_{\rm in}),t_{\rm in})^{2} \int^{t} dt' \,H(t') \,\left[\bar{c} \,\tilde{\phi}^{2}(t,t') + \bar{c} \frac{\tilde{\phi}^{2}}{\partial^{2}\phi}(t,t') \,\frac{\partial^{2}\phi(\mathbf{x}_{\rm fl},t')}{H(t')^{2}} + \ldots\right] +$$

Summary

- EFT gives a consistent expansion in $(k/k_{\rm NL})^2$, and for halos also in $(k/k_{\rm M})^2$, nonlocal effect in time and space included
- ► EFT approach is well suited for galaxy clustering (one-loop power spectra $k \sim 0.3h/Mpc$, tree level bispectra $k \sim 0.1 0.15h/Mpc$)
- Consistent description of five different observables (P_{hm}, P_{hh}, B_{hmm}, B_{hhm}, B_{hhh}) with seven bias parameters.

Outlook:

- ► Higher loops calculations in order to extend the k_{max}, and higher statistics (e.g. 4-pt function great potential)
- Calculation of observables taking into account baryons, non-Gaussianities and RSD ...
- Generalization of the formalism in order include GR effects (become important as surveys grow).