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• Stretching the dark matter sheet: Multiscale spherical 
collapse: muscling particles into place	


• Folding it: Origami approximation: toy model to 
understand velocities, spins in the cosmic web 



Pattern, printed on the spatial “sheet,” gives a 
blueprint for the structures that form

 A billion light 
years

Mark Neyrinck, JHU



Mark Neyrinck, JHU

Publicly available 
python code for 
e.g. outreach: 	

Google “Fold 
Your Own 
Universe”
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Figure 1. Cell-to-cell correlation between the linear initial overdensity field D1δ(q, z = 100) and the corresponding approximations for the divergence of
the displacement field for the 10th realisation of our set of simulations. The solid black line represents the LPT/Zeldovich approximation and the green curve
the local SC model, which approximately fits the mean N -body relation. The nonlocal relations are given by the contours for various approximations: left
panel: 2LPT (quadratic relation). middle panel: 3LPT (cubic relation) and right panel: combined 2LPT-SC with rS = 4 Mpc/h. The dark colour-code
indicates a high number and the light colour-code a low number of cells.

timations from large scale structure surveys has raised the inter-
est in approximate efficient structure formation models, which can
be massively used. See Scoccimarro & Sheth (2002); Monaco et al.
(2002); Manera et al. (2012) for generation of mock galaxy cata-
logues; and Schneider et al. (2011) to increase the volume of a set
of N -body simulations with smaller volumes. An improvement to
linear LPT is given by second order LPT (2LPT) including non-
local tidal field corrections. However, this is known to be a poor es-
timator in high and low density regions, being strongly limited by
shell crossing (Sahni & Shandarin 1996; Neyrinck 2013). Recently,
local fits based on the spherical collapse model have been proposed
(Mohayaee et al. 2006; Neyrinck 2013), which better match the
mean stretching parameter (divergence of the displacement field)
of N -body simulations. We propose in this work to combine the
superiority of 2LPT on large scales with the more accurate treat-
ment of the spherical collapse (SC) model on small scales includ-
ing a collapse truncation of the stretching parameter, which acts as
a viscosity term. Our algorithm splits the displacement field into a
long-range and a short-range component, the first one being given
by 2LPT and the second one by the truncated SC model. Both are
combined by using a Gaussian filter with smoothing scales of 4-5
Mpc/h radii, being this scale the only free parameter in our model.

2 THEORY

Let us define the positions of a set of test particles at an initial time
ti by q and call them the Lagrangian positions. The final comoving
positions x (called Eulerian positions) corresponding to the same
set of test particles at a final time tf are related to the Lagrangian
positions q through the displacement field,Ψ:

x = q +Ψ . (1)

Hence, the displacement field encodes the whole action of gravity
during cosmic evolution. An approximation is to consider that the
displacement field is a function of the initial conditions only, and
can be described by straight paths. The various models consider
the relation between the divergence of the displacement field and
the linear initial field: ψ = ψ(δ(1)) ≡ ∇ · Ψ(δ(1)), where ψ is
the so-called stretching parameter. Let us call the previous equation
the stretching parameter relation. Lagrangian perturbation theory to

third order yields the following expression for curl-free fields (see
Buchert 1994; Bouchet et al. 1995; Catelan 1995):

ψ3LPT ≡ ∇ ·Ψ3LPT (2)
= −D1δ

(1) +D2δ
(2) +D3aδ

(3)
a +D3bδ

(3)
b ,

where D1 is the linear growth factor, D2 the second order growth
factor, {D3a, D3b, D3c} are the 3rd order growth factors corre-
sponding to the gradient of two scalar potentials (φ(3)

a ,φ(3)
b ). Partic-

ular expressions can be found in Bouchet et al. (1995) and Catelan
(1995): D2 = −3/7Ω−1/143D2

1 , D3a = −1/3Ω−4/275D3
1 ,

D3b = 1/4 · 10/21Ω−269/17875D3
1 . The term δ(2)(q) represents

the ‘second-order overdensity’ and is related to the linear overden-
sity field by the following quadratic expression:

δ(2)(q) =
∑

i>j

(

φ(1)
,ii (q)φ

(1)
,jj (q)− [φ(1)

,ij (q)]
2
)

, (3)

The potentials φ(1) and φ(2) are obtained by solving a pair of Pois-
son equations: ∇2

qφ
(1)(q) = δ(1)(q), where δ(1)(q) is the linear

overdensity, and ∇2
qφ

(2)(q) = δ(2)(q). The first term is cubic in
the linear potential

δ(3)a ≡ µ(3)(φ(1)) = det
(

φ(1)
,ij

)

, (4)

and the second term is the interaction term between the first- and
the second-order potentials:

δ(3)b ≡ µ(2)(φ(1),φ(2)) =
1
2

∑

i̸=j

(

φ(2)
,ii φ

(1)
,jj − φ(2)

,ij φ
(1)
,ji

)

, (5)

(see Buchert 1994; Bouchet et al. 1995; Catelan 1995). Keeping
terms only to first order is called the Zeldovich approximation
(Zel’dovich 1970) and keeping terms to second order yields the
2LPT approximation.

Based on the nonlinear spherical collapse approximation, de-
veloped by Bernardeau (1994), Mohayaee et al. (2006) found a lo-
cal nonlinear expression for the stretching parameter relation:

ψSC ≡ ∇ ·ΨSC = 3

[

(

1−
2
3
D1δ

(1)

)1/2

− 1

]

. (6)

This analytic formula has been recently found to fit very well the
mean stretching parameter relation from an N -body simulation
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(Kitaura & Heß 2013)

-“stretching” ψ≡∇L⋅ψ,	

- Zel’dovich (1970): ψ = -δlinear.	

- ψ = -3: halo formation, where ∇L⋅xf = 0.

How does the dark-matter 
sheet really stretch?

(MN 2013)
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Pjnonlinear ≡ ΣGijPiPjnonlinear ≡ ΣGijPi

Interpolating between 2LPT and Spherical Collapse	
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Multiscale Spherical Collapse

Alternative solution: apply spherical collapse on 
many scales. Gaussian*-smooth the field at scales 
2nc, where c = cell size, where n < ~5  
!

If  δlin>3/2 at any scale, set ψ=-3. 
Apply spherical collapse formula at c, otherwise. 
!

*- Top-hat smoothing didn’t work as well. Other multiscale 
prescriptions possible. 
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How does the dark-matter 
sheet really stretch?

!
- Approaches based on the 
“stretch parameter” ψ≡∇L⋅ψ 
directly from initial conditions 
(Lagrangian divergence of  the 
displacement field) 

← perturbative

← Non-perturbative: MUltiscale 
Spherical ColLapse Evolution 
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!
- Approaches based on the 
“stretch parameter” ψ≡∇L⋅ψ 
directly from initial conditions 
(Lagrangian divergence of  the 
displacement field) 

How does the dark-matter 
sheet really stretch?

perturbative ->
Non-perturbative: 
MUltiscale 
Spherical 
ColLapse 
Evolution 

!
- Large scale structure simpler 
than often imagined on 
quasilinear scales! 

← perturbative

How does the dark-matter 
sheet really stretch?

(N-body)

← Non-perturbative: MUltiscale 
Spherical ColLapse Evolution 
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Quantitatively:

Simple 
Python Code 
for quick N-
body 
realizations & 
IC’s at 
http://skysrv.pha.jhu.edu/~neyrinck/muscle

http://skysrv.pha.jhu.edu/~neyrinck/
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How does it fold?

http://skysrv.pha.jhu.edu/~neyrinck/muscle

http://skysrv.pha.jhu.edu/~neyrinck/


Folding in a 1D universe

Mark Neyrinck, JHU
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- Tools needed to 
understand phase-space 
geometry of  haloes and 
subhaloes necessary — 
difficult to distinguish 
substructures in crowded 
environments 
!

- Easy to visualize in 1D, 
but 2D? 3D?

2

FIG. 1: The phase space of a one-dimensional halo simulated
from random but smooth initial condition. The individual
subhaloes are shown by di↵erent colors

tively. Topologically, this mapping, referred to as the La-
grangian submanifold, is a three-dimensional sheet in the
the six-dimensional (q,x) space. The method is based on
a concept of a DM sheet in phase space v = v(x, t) suc-
cessfully employed to improve accuracy of the estimates
of the density, velocity and other parameters in standard
cosmological N -body simulations [16, 17]. The major dif-
ference between this concept and the conventional one is
in the di↵erent interpretation of the role of the particles
in the simulations of the evolution of the continuous DM
medium. Instead of the common interpretation of parti-
cles as carriers of mass, it was suggested to treat them
as massless markers of the vertices in a tessellation of
the three-dimensional DM sheet in six-dimentional phase
space. The particles’ mass is uniformly distributed inside
each tetrahedra of the tessellation [16, 17]. Once the tes-
sellation is built in the initial state of the simulation, it
must remain intact through the whole evolution because
of the Liouville’s theorem, as long as the thermal veloci-
ties of the DM particles are vanishing. This requirement
results in a significant di↵erence between this approach
and Delaunay tessellation suggested in [18] for estimating
the density from particle distributions.

The particles being the vertices of the tetrahedra de-
scribe all deformations occurred to the geometry of the

FIG. 2: Fields x(q) and n↵(q) are plotted in the top and
bottom panels respectively for the halo shown in fig. 1.

tessellation. However it remains continuous in both six-
dimensional phase space (x,v) and in (q,x) space. In
particular, the variations of tetrahedra volumes result
in the corresponding change of the tetrahedra densities.
This property is especially valuable because it makes
the tessellation self-adaptive to the growth of density
perturbations with time. We stress that whereas both
(x,v) and (q,x) spaces contain all the information about
a dynamical system, the latter is a metric space and
hence superior to the non-metric phase space. More-
over, the Lagrangian submanifold mapping, q = q(x),
is a single-valued function, unlike the phase-space map-
pings v = v(x) or x = x(v) which are multivalued.
We now illustrate the main idea of the proposed La-

grangian submanifold technique with a halo formed in
one-dimensional N -body simulation of a collisionless cold
DM medium in an expanding universe.
Figure 1 shows the phase space of the halo evolved in

the universe from smooth random initial condition. The
halo can be naturally defined as the region in Eulerian
space where the number of streams is greater than one.
The number of stream changes by two at caustics where
the tangent to the phase space curve becomes vertical
and the density in the corresponding stream becomes
formally infinite. One can see a complicated substruc-
ture that consists of a number of subhaloes and streams

(Shandarin & Medvedev 2014)



Eric Gjerde, 	

origamitessellations.com

Rough analogy to origami: initially flat (vanishing 
bulk velocity) 3D sheet folds in 6D phase space.



The Universe’s crease pattern	


Crease 
pattern 
before 
folding

After 
folding

(Neyrinck 2012)



!
!
!

Schematic, based on the VIPERS survey

.

. .



Currently on display in the JHU physics dept:



New Scientist article (Dec 2014)	

“The Origami Code” Documentary
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Origami mathematics:	

Helps in art, engineering, biology.	


Can it help to understand structure formation?	

Let’s see …

Dr. Robert J. Lang



Origami approximation to large-scale structure

• creases = reflections 
• 1D: Nodes form between “void centers.” Squashed pile of  string 
• 2D: Extrude  — make sure single-stream/layer regions don’t rotate 

• 2D voids       from 1D voids 
• 2D filaments from 1D nodes 
• 2D nodes       new (can twist!)

• 1D cosmic web:



!

• Filaments that form together 
• In (?), >1 reflection → rotation 
• Called a “twist fold” by origamists 
• “Triangular collapse” by cosmologists?

Mark Neyrinck, JHU

Cosmological Origami!
!
!

?

θ

θ
θ

θ

2θ



Tetrahedral Twist Folds/Tetrahedral collapse

Unless the central node has no rotation, 
filaments will twist, giving a correlation 

between adjacent halo spins

1230 A. Slosar et al.

Figure 3. This figure shows the constrains on the binned correlation func-
tion c for angular (top panel), redshift (middle panel) and projected (bottom
panel) spaces. Two lines correspond to our best-fitting exponential (solid
red) and Gaussian (dashed green) fits.

5 R ESULTS

In Fig. 3, we plot the results of our binned estimation of c(r). From
the two figures, it is immediately clear that there is a hint of an
excess at low values of r. The statistical significance of this excess
is marginal, at about !χ 2 of 7.5, 14.2 and 5.6 for angular, real and
projected distances with six extra degrees of freedom associated
with six bins. This corresponds to 2σ–3σ detection in the redshift
space but a non-detection in other spaces.

To understand this excess better, we calculate the probability con-
tours on the a − b plane using exponential and Gaussian likelihoods.
These are plotted in Fig. 4 and the relevant numbers are given in
Table 1. How significant are these detections? The improvement
in χ 2 is between nine and 12 with respect to zero correlation in
angular and redshift cases with two free parameters. Within a fre-
quentist approach, this is significant at 2σ–3σ level. The excess
at low redshift is not significant in the case of projected distances,
although visually, the low-distance points are not incompatible with
an excess.

A more appropriate statistical procedure is the Bayesian evidence
(Slosar et al. 2003; Beltrán et al. 2005; Trotta 2007) which we
calculate for all our two model parametrizations and are also shown
in Table 1. These can be calculated exactly for a simple problem
like ours. Evidence depends weakly on the prior size, and in this we
chose the prior on a between 0 and 1/1.5 for Gaussian/exponential
case and b between 0 and 1000 arcsec or 1 or 0.5 Mpc h−1 projected.
Regardless of the exact number employed, the evidence ratio is
between a few and a few tens units implying a weak evidence or a
hint for angular and redshift spaces, but not for the projected space.
This is consistent with results from the frequentist approach above.

Figure 4. This figure shows the constrains on the a–b plane for all data
sets and models under consideration. Thick lines enclose 68.3, 99.4 and
99.8 per cent likelihood volume for the weighted sample. Thin lines are the
same for unweighted sample. The top and bottom rows show results in real
and angular spaces, respectively. The left- and right-hand columns are the
exponential and the Gaussian fittings exponentially.

Finally, we acknowledge the fact that the exponential and Gaus-
sian forms were chosen a posteriori after seeing the data, and hence
the improvements in fits contain a subjective a posteriori factor.

5.1 Systematics

We can now briefly discuss some of the main systematic effect that
might affect our measurements.

Rogue pairs. As discussed in Section 4.1, we manually looked
at all pairs in the clean sample and discarded rogue pairs. It is
an important systematic check, because we have at the same time
convinced ourselves that manually classifying a small subset (80
galaxies) of the total sample gave consistent results.

Weighting. Repeating our measurements with unweighted data,
changes result by less than 5 per cent.

Cleanliness level. We have repeated the analysis with the su-
perclean sample. There are many fewer galaxies in the superclean
sample (Lintott et al. 2008) and so the statistical significance de-
creases considerably. We have no significant detection in any of the
spaces considered. The error bars increase by a factor of 2 to 2.5,
but the central values in individual bins remain consistent. While

C⃝ 2008 The Authors. Journal compilation C⃝ 2008 RAS, MNRAS 392, 1225–1232
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Chirality correlation observed in SDSS (Slosar et al. 2008)



Tetrahedral Twist Fold

Before  folding   After folding

8 MARK C. NEYRINCK

Figure 6. Tetrahedral-collapse models. Filament creases (green) are indicated by trian-
gular tubes, intersecting at the central node. Wall creases (blue), extend from filament
edges through the thin lines drawn between filaments. Node creases are in red. Left:
Pre-folding/collapse (Lagrangian). Right: Post-folding/collapse (Eulerian). Top: An ir-
rotational model (↵1 = ⇡/2). Each filament vector f̂i ? a face of the central tetrahedron.
Walls, filaments, and the node invert along their central planes, axes, and point, but re-
main connected as before. Void regions simply move inward. All 15 initial regions over-
lap at the center. Bottom: A rotational model (↵1 = ⇡/6). The top filament rotates
counter-clockwise by ⇡/3, while the smaller, bottom filaments rotate clockwise by 2⇡/3. See
http://skysrv.pha.jhu.edu/

~

neyrinck/TetCollapse for an interactive model.

Many of the results given here, particularly in 3D, were numerical. This is fine for comparison to
cosmological simulations, as we plan to do. But there is much room for further rigorous mathematical study
of polyhedral collapse, both of isolated nodes, and of how networks of collapsed polyhedra behave together.

Irrotational (~ spherical collapse)

Rotational
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Conclusions

• Stretching the dark matter sheet: Multiscale spherical 
collapse: muscling particles into place	


• Folding it: Origami approximation: toy model to 
understand velocities, spins in the cosmic web 


