How the Dark-Matter Sheet Stretches and Folds up to Form Cosmic Structures

Mark Neyrinck Johns Hopkins University

ICTP,May 15, 2015

Outline

- Stretching the dark matter sheet: Multiscale spherical collapse: muscling particles into place
- Folding it: Origami approximation: toy model to understand velocities, spins in the cosmic web

Mark Neyrinck, JHU

Publicly available python code for e.g. outreach: Google "Fold Your Own Universe"

Mark Neyrinck, JHU

- Nocollapse Fold Your Own Universe

How does the dark-matter sheet really stretch?

-"stretching" $\Psi \equiv \nabla_{\mathrm{L}} \cdot \Psi$,

- Zel'dovich (I970): $\Psi=-\delta_{\text {linear }}$
$-\Psi=-3$: halo formation, where $\nabla_{\mathrm{L}} \cdot \mathbf{x}_{\boldsymbol{f}}=0$.
- 2LPT, 3LPT:

(Kitaura \& Heß 2013)

Mark Neyrinck, JHU

Interpolating between 2LPT and Spherical Collapse

Mark Neyrinck, JHU

Multiscale Spherical Collapse

Alternative solution: apply spherical collapse on many scales. Gaussian*-smooth the field at scales $2^{n} c$, where $c=$ cell size, where $n<\sim 5$

If $\delta_{\text {lin }}>3 / 2$ at any scale, set $\psi=-3$. Apply spherical collapse formula at c, otherwise.
*- Top-hat smoothing didn't work as well. Other multiscale prescriptions possible.

How does the dark-matter sheet really stretch?

\leftarrow perturbative
\leftarrow Non-perturbative: MUltiscale Spherical ColLapse Evolution

- Approaches based on the
"stretch parameter" $\psi \equiv \nabla_{\mathrm{L}} \cdot \boldsymbol{\psi}$ directly from initial conditions (Lagrangian divergence of the displacement field)

How does the dark-matter sheet really stretch?
\leftarrow perturbative
(N-body)
\leftarrow Non-perturbative: MUltiscale Spherical ColLapse Evolution

- Large scale structure simpler than often imagined on quasilinear scales!
 http://skysrv.pha.jhu.edu/~neyrinck/muscle Mark Neyrinck, JHU

How does it fold?

http://skysrv.pha.jhu.edu/~neyrinck/muscle
Mark Neyrinck, JHU

Folding in a 1 D universe

Mark Neyrinck, JHU

- Tools needed to understand phase-space geometry of haloes and subhaloes necessary difficult to distinguish substructures in crowded environments
- Easy to visualize in 1D, but 2D? 3D?
(Shandarin \& Medvedev 2014)

Rough analogy to origami: initially flat (vanishing bulk velocity) 3D sheet folds in 6D phase space.

Eric Gjerde,
origamitessellations.com

The Universe's crease pattern

(Neyrinck 2012)

Schematic, based on the VIPERS survey

Currently on display in the JHU physics dept:

New Scientist article (Dec 2014) "The Origami Code" Documentary

Fold your own universe

The secrets of the cosmos are encoded in origami, says Stephen Battersby

0UR universe was shaped y origami. Gravity took a primordial paper sheet and folded ittoform galaxies thus bringing light and life to the cosmos. This original take on the creation myth is more than fust empty metaphor. One astrophysicist is discovering how origami can tell us a few things about how galaxies are created, why they tend to spin in unison- and how in tend to spin in unison- and how in nested within vast, dark polygons. MarkNeytinckof johns Hopkins Unlversity in Baltimore, Maryland, studies how galaxies and other structures form. Specifically, he looks at how dense spots of invisible dark matter suck in enough normal, gassy mattertocreate galaxles. In 2011, Neyrinck went toa talk by orgamı master and former physcicist Robert Lang. "He described spacecraft solar panels that unfold origamically." he says. "I wondered if some ort the origami mathematics he described could be of use in cosmology too."
Tosee why it might be, we must take a trip to the sixth dimension. All matter In the universe has a posittion in the three dimensions of ordinary space. It also has motion, which can be plotted in an abstract space with three dimensions of
its own. Physiclsts often seek Insights by plotting posittion and motion together in one grand 6 D arena called phase space.
Immediately atter the big bang matter was spread almost evenly throughout the three dimensions hroughout the three dimensions of position. Although space-time was itself expanding at a tearing pace, the matter wasnt moving much relat to this stretchy background, so all lts motton coordinates were zero. In 6 D phase space, it forms a flat 3D sheet. Then gravity began to pull matter towards any sllghtly denser patches. Vlewed in phase space, movement means that the 3. matter sheet bends out into the dimensions of motion. As these movements become more pronounced, the sheet twists around and overlaps itself- a bit like a fold.
More folds mean higher density as more matter is overlapping. Rather as when you fold a sheet of paper by hand, what tends to happen is that manyfolded florets (very dense) tend to be folded up by less folded strips (less dense), with bIg gaps in between where the matter sheet is stlll flat (least dense). The result looks much like the largescale structure of the universe today. where dense galaxy clusters are jotned
by fllaments into a network of matter, with volds in between.
Origami isn't exactly the same as the real universe, of course. Paper can't stretch, whille gas and dark matter can. But the idea captures a lot of the essential physics, while being much simpler than physcs, the gargantuan simumations aquary formation Acouple or years on from those first folds the orymer ls now promisiduldends.
"Origami captures a lot of the essential physics of galaxy formation"
"Finally we're getting to the point where origami mathematics should directly help in comparing theory to observations of galaxies, "says Neyrinck.
For one thing it could help map dark matter Dark matter far outweighs the ordinary stuff of interstellar gas, dust, stars and us. Being invisible, however, It is only known through its gravitational influences, such as the way it bends the light reaching us from distant galaxies, slightly distorting our view of them. Wecan usethis "weak lensing" effect totrace dark matter, but the method ,

Origami mathematics:

 Helps in art, engineering, biology. Can it help to understand structure formation? Let's see ...Mark Neyrinck, JHU

Origami approximation to large-scale structure

- 1D cosmic web:
- creases $=$ reflections
- 1D: Nodes form between "void centers." Squashed pile of string
- 2D: Extrude - make sure single-stream/layer regions don't rotate - 2D voids from 1D voids
- 2D filaments from 1D nodes
- 2D nodes new (can twist!)

Cosmological Origami

- Filaments that form together
- In (?), >1 reflection \rightarrow rotation
- Called a "twist fold" by origamists
- "Triangular collapse" by cosmologists?

Mark Neyrinck, JHU

Tetrahedral Twist Folds/Tetrahedral collapse

Unless the central node has no rotation, filaments will twist, giving a correlation between adjacent halo spins

Chirality correlation observed in SDSS (Slosar et al. 2008)

Tetrahedral Twist Fold

Irrotational (\sim spherical collapse)

Rotational

Before folding
After folding

Conclusions

- Stretching the dark matter sheet: Multiscale spherical collapse: muscling particles into place
- Folding it: Origami approximation: toy model to understand velocities, spins in the cosmic web

Mark Neyrinck, JHU

