A Comprehensive Assessment of the Too-Big-to-Fail Problem

Arthur Fangzhou Jiang Advisor: Frank van den Bosch Yale University

Acknowledgments: Peter Behroozi, Mike Boylan-Kolchin, Shea Garrison-Kimmel, Erik Tollerud, Andrew Hearin, Duncan Cambell

Workshop on Cosmological Structures, ICTP, Trieste

Friday, May 22, 15

Outline

What is "Too Big To Fail" (TBTF) ?
Semi-analytical model of dark matter subhaloes
Severity of TBTF

Professional Seminar, Yale University

TBTF

Formulation I:

simulation: order of 10
 subhaloes with Vmax>25km/s
 MW dSphs: Vmax≤25km/s
 *massive subhalo" formulation

Sormulation II:

a Vmax gap between ≈60km/s and ≈25km/s

Formulation III:

subhalo density proxy $\Gamma \equiv 1 + \log(0.0014 V_{\max}^{2.2}/R_{\max})$ Purcell & Zentner (2012)

the most massive subhaloes are too dense ($\Gamma_{
m max}>1$) to be consistent with MW dSphs ($\Gamma < 1$)

the

Outline

What is "Too Big To Fail" (TBTF) ?
Semi-analytical model of dark matter subhaloes
Severity of TBTF

Model: Accurate Halo-to-Halo Variance

benchmark: Bolshoi simulation
441 $M_0 = 10^{13.5 \pm 0.05} h^{-1} M_{\odot}$ 1986 $M_0 = 10^{12.10 \pm 0.01} h^{-1} M_{\odot}$ model:

model: 500 $M_0 = 10^{13.5} h^{-1} M_{\odot}$ 2000 $M_0 = 10^{12.1} h^{-1} M_{\odot}$

Jiang & van den Bosch, submitted to MNRAS

7

Outline

What is "Too Big To Fail" (TBTF) ?
 Semi-analytical model of dark matter subhaloes
 Severity of TBTF

8

"Massive Subhalo" Count

I0,000 realizations for each halo mass

definition:
 V_{acc} > 30kms⁻¹
 V_{max} > 25kms⁻¹
 MW has 2 MSs

Wang et al. (2012):
 lower MW halo mass
 ==> significantly
 lower number of MSs

Contemporary MW halo mass constraint:
 M₀ ∈ [10^{11.7}, 10^{12.2}]h⁻¹M_☉
 ↑
 Kafle et al. (2014)

Vmax Gap

- Vmax (estimates) for MW satellites from Kuhlen et al. (2010) Boylan-Kolchin et al. (2012) Kallivayalil et al. (2013)
- for MW satellites with no published Vmax, use MacConnachie (2012)

MW-consistent fraction as a function of halo mass

10,000 realizations for each halo mass

 O NGap ≤ 1
 (number of subhaloes in the gap ≤ 1) $V_{\rm max} \in [25, 55] {\rm km s}^{-1}$ or $V_{\rm max} \in [30, 60] \rm km s^{-1}$ ⊘ Nu ≥ 2 (number of MC analogs ≥ 2) $V_{\rm max} > 55 \rm km s^{-1}$ or $V_{\rm max} > 60 \rm km s^{-1}$

probability of having MW-consistent Vmax Gap: always <1%</p>

Subhalo Density recap: MW-consistent <==> $\Gamma_{\rm max} < 1$

Jiang & van den Bosch, submitted to MNRAS

 also can be alleviated by lowering MW halo mass
 sensitive to cosmology change
 WMAP7 (Ω_m, σ₈) = (0.266, 0.801)

Planck $(\Omega_{\rm m}, \sigma_8) = (0.318, 0.834)$

cosmology comes in mainly via Rmax

Summary

If TBTF is the missing massive subhaloes: MW-consistent fraction <1% for MW-size haloes (M_0 =12.0) reconcilable by lowering MW halo mass, MW-consistent fraction $\geq 10\%$ for M₀=11.8 o not very sensitive to cosmology (WMAP7 versus Planck) If TBTF is the massive subhaloes being too dense: MW-consistent fraction <5% for MW-size haloes (M_0 =12.0) reconcilable by lowering MW halo mass, MW-consistent fraction $\approx 10\%$ for M₀=11.8 (WMAP7) or very sensitive to cosmology: ≈3% for $M_0=11.8$ (Planck) If TBTF is a Vmax Gap: MW-consistent fraction always <1%, irrespective of MW</p> halo mass or cosmology

Why semi-analytical model? Why not simulations ?

