CMS Underlying Event and Double Parton Scattering Tunes

Deniz SUNAR CERCI Adiyaman University On behalf of the CMS Collaboration

23rd November 2015

7th International Workshop on

Multiple Partonic Interactions

at the LHC

The Abdus Salam International Centre for Theoretical Physics www.ictp.it

23 - 27 November 2015

Miramare, Trieste, Italy

Outline

- Underlying Event and Observables
- Motivation
- CMS UE tunes
- CMS DPS tunes
- Comparisons with other UE measurements
- Inclusive jets, Z boson production, Z boson in Drell-Yan
- Predictions and Extrapolation to 13 TeV
- dN/dη of charged hadrons at 13 TeV (1st LHC Run II paper)
- Summary and Conclusions

Underlying Event @ LHC

The hard pp-collision at the LHC can be interpreted as a "hard scattering" between partons accompanied by the underlying event (UE).

- UE consists of particles from
 - Beam-Beam Remnants (BBR)
 - Multiple Parton Interactions (MPI)
 - Soft Initial and final state radiation (ISR&FSR)

 But two hard 2-to-2 parton scatters can take place within the same hadron-hadron collision called Double-Parton-Scattering (DPS)

– DPS is described by an effective cross section parameter σ eff

$$\sigma_{AB} = \frac{\sigma_A \sigma_B}{\sigma_{eff}}$$

- σ eff is not a directly observed but a parton-level quantity
- calculalable from the overlap function of the two transverse profile distributions of the colliding hadrons, implemented in a given MPI model.

Underlying Event Observables

- TransMAX and TransMIN Charged Particle Density:
 - Number of charged particles ($p_{\tau} > 0.5 \text{ GeV/c}$, $|\eta| < 0.8$) in the the maximum (minimum) of the two "transverse" regions as defined by the leading charged particle, PTmax, divided by the area in $\eta \phi$ space, $1.6 \times 2\pi/6$, averaged over all events with at least one particle with $p_{\tau} > 0.5 \text{ GeV/c}$, $|\eta| < 0.8$.
- TransMAX and TransMIN Charged Ptsum Density:
 - Scalar p_T sum of charged particles ($p_T > 0.5 \text{ GeV/c}$, $|\eta| < 0.8$) in the the maximum (minimum) of the two "transverse" regions as defined by the leading charged particle, PTmax, divided by the area in $\eta - \phi$ space, $1.6 \times 2\pi/6$, averaged over all events with at least one particle with $p_T > 0.5 \text{ GeV/c}$, $|\eta| < 0.8$.

Transverse density TransAVE = (TransMIN+TransMAX) / 2 TransDIFF = TransMAX - TransMIN

- TransMIN very sensitive to MPI and BBR
- TransMAX often contains a 3rd jet in events with hard ISR or FSR.
- TransDIFF very sensitive to ISR and FSR

$$\begin{split} |\Delta \phi| &< \pi/3 \rightarrow \text{TOWARD region} \\ \pi/3 &< |\Delta \phi| &< 2\pi/3 \rightarrow \text{TRANSVERSE region} \\ |\Delta \phi| &> 2\pi/3 \rightarrow \text{AWAY region} \end{split}$$

Motivation

- Understanding of the UE data is important for the analyses which use MC predictions
- Previous MC tunes did not well describe the energy dependence of UE data
 - Predictions @ 7 TeV reproduce well the data spectrum
 - But do not have optimal description for 900 GeV
- Charged particle density and charged particle PTsum density

- More precise prediction needed for the new LHC data at 13 TeV
 - So need a better tune to provide energy dependence
 - Vary parameters, which are sensitive to the underlying event
 - Start with Pythia6 Z2*lep and Pythia8 4C
 - Tune to CDF (0.3, 0.9 and 1.96 TeV) and CMS (7 TeV) data at different center-of-mass energies
 - Use two different PDF sets CTEQ6L1 and HERAPDF1.5LO

CMS UE Tunes: PYTHIA 8

- Use CDF and CMS data for the tunes
 - Select the leading charged particle (pTmax)
 - Use charged particles with $|\eta| < 0.8 \& p_{T} > 0.5 GeV.$
- The software used for the tunes RIVET (A. Buckley et al, doi:10.1016/j.cpc.2013.05.021)

PROFFESSOR (A. Buckley et al. , Eur.Phys.J.C65(2010) 331357)

- Take PYTHIA8 Tune 4C as reference tune then construct two new UE tunes
 - using CTEQ6L1 (CUETPS1-CTEQ6L1)
 - using HREAPDF1.5LO (CUETP8S1-HERAPDF1.5LO)
 - varying the four parameters within the Tuning Range

 $p_{T0}(\sqrt{s}) = p_{T0}^{ref} \times ($

PYTHIA8 Parameter	Tuning Range	Tune 4C (CTEQ6L1)	CUETP8S1 (CTEQ6L1)	CUETP8S1 (HERAPDF1.5LO)
MultipartonInteractions:pT0Ref [GeV]	1.0 - 3.0	2.085	2.101	2.000
MultipartonInteractions:ecmPow	0.0 - 0.4	0.19	0.211	0.250
MultipartonInteractions:expPow	0.4 -10.0	2.0	1.609	1.691
ColourReconnection:range	0.0 - 0.9	1.5	3.313	6.096

- By using the output from PYTHIA 8:
 - it is possible to predict the σ eff value in the tune, defined by the UE parameters
 - PROFFESSOR gives the eigentunes in order to get the uncertainties of the parameters

CMS UE Tunes: PYTHIA 8, PYTHIA 6 and HERWIG++

Combines updated fragmentation parameter for NNPDF2.3LO

- NNPDF2.3LO has a gluon distribution @ small-x different than CTEQ6L1 & HERAPDF1.5LO
- Affecting predictions especially in the forward region

New tune PYTHIA8 CUETP8M1

- using parameters of Monash Tune
- Fitting two MPI energy dependence $\frac{Mult}{Mult}$ parameters to UE data @ $\sqrt{s} = 0.9$, 1.96 & 7 TeV Cold
- Two new PYTHIA6 UE tunes are constructed
 - Starting with Tune Z2*lep parameters,
 - Using CTEQ6L1 (CUETP6S1-CTEQ6L1)
- Using HERAPDF1.5LO (CUETP6S1-HERAPDF1.5LO).
- Not only MPI energy-dependence parameters but
 - the core-matter fraction PARP(83),
 - color reconnection (CR) strength PARP(78),
 - CR suppression PARP(77) are also varied.

New HERWIG++ UE tune, CUETHppS1

- obtained varying four parameters in table.
- set MPI cut-off $p_{\tau}^{\ 0}$ and ref. energy to Tune

UE-EE-5C

- vary MPI extrap. parameter

	PYTHIA8 Parameter	Tuning Range	Monash	CUETP8M1
	PDF	-	NNPDF2.3LO	NNPDF2.3LO
	MultipartonInteractions:pT0Ref [GeV]	1.0 - 3.0	2.280	2.402
	MultipartonInteractions:ecmPow	0.0 - 0.4	0.215	0.252
′ TeV	MultipartonInteractions:expPow	-	1.85	1.6^{*}
	ColourReconnection:range	-	1.80	1.80**
	MultipartonInteractions:ecmRef [GeV]	-	7000	7000**

HERWIG++ Parameter	Tuning Range	UE-EE-5C	CUETHppS1
PDF	-	CTEQ6L1	CTEQ6L1
MPIHandler:Power	0.1 - 0.5	0.33	0.371
RemnantDecayer:colourDisrupt	0.1 - 0.9	0.8	0.628
MPIHandler:InvRadius [GeV ²]	0.5 - 2.7	2.30	2.255
ColourReconnector:ReconnectionProbability	0.1 - 0.9	0.49	0.528

Results @ $\sqrt{s} = 0.9$ and 1.96 TeV

• Charged particle multiplicity, Σp_{τ} in TransMIN and TransMAX regions fro CDF data @ 0.9 and 1.96 TeV

Results @ √s = 7 TeV

Charged particle multiplicity, Σp_{τ} in TransMIN and TransMAX regions fro CMS data @ 7 TeV

CMS GEN-14-001

CMS DPS Tunes

- MPI parameters are determined by fitting to observables
- The observables:

$$\Delta S = \arccos\left(\frac{\vec{p}_{T}(object_{1}) \cdot \vec{p}_{T}(object_{2})}{|\vec{p}_{T}(object_{1})| \times |\vec{p}_{T}(object_{2})|}\right)$$
$$\Delta^{rel} p_{T} = \frac{|\vec{p}_{T}^{jet_{1}} + \vec{p}_{T}^{jet_{2}}|}{|\vec{p}_{T}^{jet_{1}}| + |\vec{p}_{T}^{jet_{2}}|},$$
$$object_{1}: W-boson \ object_{2}: dijet \ pair \ for \ W+dijet \ object_{1}: hard-jet \ pair \ object_{2}: soft \ jet \ pair \ for \ 4j}$$

- Study of W+dijet & 4-jet production scenario performed with PYTHIA8 tune 4C:
- Only the exponential distribution expPow varied (CDPSTP8S1-Wj)
- full tune with all parameters are varied (CDPSTP8S2-Wj)
- Uncertainties quoted for $\sigma_{\rm eff}$ computed from the uncertainties of the fitted parameters given by the eigentunes.
- Compatible with the value measured by CMS using the template method σ_{eff} = 20.6 ± 0.8 (stat) ± 6.6 (sys) mb

PYTHIA Parameter	TUNE 4C	CDPSTP8S1-Wj	CDPSTP8S2-Wj
PDF	CTEQ6L1	CTEQ6L1	CTEQ6L1
Predicted $\sigma_{\rm eff}$ (in mb)	30.3	$25.9^{+2.4}_{-2.9}$	$25.8^{+8.2}_{-4.2}$

CMS DPS Tunes

- MPI parameters are determined by fitting to observables
- The observables:

$$\Delta S = \arccos\left(\frac{\vec{p}_{T}(object_{1}) \cdot \vec{p}_{T}(object_{2})}{|\vec{p}_{T}(object_{1})| \times |\vec{p}_{T}(object_{2})|}\right)$$
$$\Delta^{rel} p_{T} = \frac{|\vec{p}_{T}^{jet_{1}} + \vec{p}_{T}^{jet_{2}}|}{|\vec{p}_{T}^{jet_{1}}| + |\vec{p}_{T}^{jet_{2}}|},$$
$$object_{1}: W-boson \ object_{2}: dijet \ pair \ for \ W+dijet \ object_{1}: hard-jet \ pair \ object_{2}: soft \ jet \ pair \ for \ 4j}$$

- Study of W+dijet & 4-jet production scenario performed with PYTHIA8 tune 4C:
- Only the exponential distribution expPow varied (CDPSTP8S1-Wj)
- full tune with all parameters are varied (CDPSTP8S2-Wj)
- Uncertainties quoted for $\sigma_{\rm eff}$ computed from the uncertainties of the fitted parameters given by the eigentunes.
- Compatible with the value measured by CMS using the template method σ_{eff} = 20.6 ± 0.8 (stat) ± 6.6 (sys) mb

PYTHIA Parameter	TUNE 4C	CDPSTP8S1-4j	CDPSTP8S2-4j
PDF	CTEQ6L1	CTEQ6L1	CTEQ6L1
Predicted $\sigma_{\rm eff}$ (in mb)	30.3	$21.3^{+1.2}_{-1.6}$	$19.0\substack{+4.7 \\ -3.0}$

Compatibility of CMS Tunes

ATLAS Coll. Phys.Rev. D83 (2011) 112001

 Comparison of CMS DPSsensitive data for 4-jet production @ 7 TeV (top)

■ ATLAS UE data @ √s = 7 TeV compared to predictions obtained with various tunes (bottom)

• $\sigma \text{ eff} \approx 20 \text{ mb} (\text{CMS DPS} \text{tunes})$

■ $\sigma \text{ eff} \approx 26-29 \text{ mb}$ (CMS P Y T H I A 8 UE tunes)

Reasonably well description for DPS observables by predictions from P Y T H I A 8 using CUETP8M1

Predictions using
CDPSTP8S2-4j do not fit the
UE data as the UE tunes do.

Predictions using CUETP8M1describe the DPSsensitive observables better than CUETHppS1, but not quite as well as the DPS tunes.

Comparison with other UE measurements

Predicting MB observables

Predicting MB observables (II)

15/20

Inclusive jet production

Inclusive jet cross section as a function of p_{T} in different rapidity ranges @ $\sqrt{s} = 7$ TeV

Data compared to different predictions

Predictions using CUETP8M1 describe the data best

All the tunes overshoot the jet spectra at small p_{τ} .

■CUETHppS1 underestimate the high p₁ region

Predictions from P O W H E G interfaced to P Y T H I A 8 using CUETP8S1-HERAPDF1.5LO and CUETP8M1 provide very good description.

Z boson production

 p_{τ} and y distributions of the Z boson in pp collisions at $\sqrt{s} = 7$ TeV

Prediction using P Y T H I A 8 with CUETP8M1 (without POWHEG) agrees reasonably well @ small p₁

POWHEG interfaced to PYTHIA8 using CUETP8S1-CTEQ6L1 and CUETP8M1 provides good agreement overall.

Z boson in Drell-Yan production

dN/dη of charged hadrons @ 13 TeV

First LHC Run II paper at 13 TeV

- Datasets:
 - data taken June 7, 2015
 - number of collisions per bunch crossing: ~0.05
 - CMS tracker and pixel detectors ON
 - CMS magnet off, B=0 (straight tracks) Charged-particle multiplicity, $\sqrt{s} = 13$ TeV

• Pseudorapidity density distributions of charged hadrons in the region $|\eta| < 2$ for inelastic pp collisions

 Charged hadron multiplicity at midrapidity: 5.49 ± 0.01 (stat.) ± 0.17 (syst.) Center-of-mass energy dependence

 Green band stands for total experimental uncertainty on the data

Summary

- CMS has constructed new PYTHIAUE tunes using different PDFs
- All the new CMS UE tunes predict remarkably similar results for the UE observables @ 13 TeV.
- DPS sensitive observables were fitted directly by tuning the MPI parameters
 - Two PYTHIA8 W+dijet DPS tunes and two PYTHIA8 4-jet DPS tunes were constructed
- CMS UE tunes perform fairly well in the description of DPS observables,
 - do not fit the DPS data as well as the DPS tunes do.

At present, not able to describe both soft and hard MPI within the current PYTHIA and HERWIG++ frameworks.

- σ eff is also calculated by fitting the DPS-observables.
- Predictions of PYTHIA8 using the CMS UE tunes agree fairly well with the MB observables in the central region
 - interfacing to higher-order, i.e. POWHEG, and multileg, i.e. MADGRAPH, ME generators is possible without destroying their good description of the UE.
 - No need to produce separate tunes for these generators.
- All of the new CMS tunes come with the eigentunes
 - can be used to estimate the uncertainties of the theoretical predictions.
- The new CMS tunes will play an important role in predicting and analyzing LHC data @ 13 & 14 TeV!

Thank you for your attention!

BACKUP

Extrapolation to 13 TeV

Extrapolation to 13 TeV (II)

to

Extrapolating DPS to 13 TeV

Predictions for the DPS-sensitive observables @ 13 TeV are shown for

- CMS PYTHIA8 UE tunes: CUETP8S1-CTEQ6L1, CUETP8S1-HERAPDF1.5LO and CUETP8M1,
- CMS P Y T H I A 8 DPS tunes: CDPSTP8S1-4j and CDPSTP8S2-4j.

- In HERWIG++, eff is independent of the center-of-mass energy
- PYTHIA8 gives a eff that increases with energy.
- PYTHIA8UE tunes predict ~7% increase in eff between 7 TeV & 13 TeV
- CDPSTP8S2-4j predicts an increase of ~20%.

Extrapolating MB to 13 TeV

 $|\eta|$

CMS Detector

CMS Detector

CMS Underlying Event and Double Parton Scattering Tunes, MPI7