# MC Tuning @ ATLAS

Stephen Jiggins on behalf of the ATLAS Collaboration University College London (UCL)





#### <u>Contents</u>

# 

#### **Contents:**

- **1)** Monte Carlo models/event generation
- 2) Basic Tuning Methodology
- 3) "A2" tune series → Pileup Modelling
- 4) "A14" Pythia8 tune → PS + MPI tune
- 5) "ATTBAR-..." NLO+PS → ttbar specific
- 6) "aMC@NLO+Pythia8" tune → NLO+PS general tune
- 7) Conclusion



### <u>Monte Carlo Event Model</u>



#### <u>Monte Carlo Event Model</u>



#### Monte Carlo Uses at ATLAS



#### **Unfolding:**

 Extrapolation from Reconstruction to Particle Level

#### **Background Estimates:**

- Data control regions often define background normalisation
- MC define differential cross-section shapes.
- Over-tuning of non-perturbative parameters may hide New Physics

#### **Pile-up simulation + Calibration:**

- Overlay hard event with 'n' inclusive inelastic scatters → Pile-up
- Jet identification and calibration sensitive to pileup. → Diffuse noise in reconstructed jets



#### Methodology:



6. X<sup>2</sup> minimisation of analytic approximation over full MC parameter space in MC/Data comparison.

#### **Tools**

- Human intuition
- Rivet Tool Kit
  - Particle Level Analysis
  - Data Analysis repository

#### Professor

- Random Sampling of parameter hypercube
- Analytic approximation of observable response to parameters

$$f_b(\vec{P}) = a_0^b + \sum_i B_i^b p'_i + \sum_{i \le i} C_{ij}^b p'_i p'_j + \dots$$

χ<sup>2</sup> minimisation



# 

# **"A2" Tunes** UE/MB Tunes ATL-PHYS-PUB-2012-003

#### "A2" Tune → UE/MB Tune

- Dedicated Pythia8 pile-up tune. "A2" has two sub-sets "AU2" & "AM2". UE and Min-Bias respectively.
- Based on Pythia8 4C tune, with x-dependent matter profile (like 4Cx tune):

$$\rho(r,x) \propto \frac{1}{a_3(x)} \exp(\frac{-r^2}{a^2(x)})$$
 Where:  $a(x) = a_0(1 + \frac{a_1}{a_1} \ln(1/x))$  Pythia8.153 "bprofile = 4"

- ATLAS data at 900GeV & 7TeV
  - → Models for energy extrapolation incapable of tuning to LHC & Tevatron data at 3 CMS energies.
  - $\rightarrow$  Tevatron data ignored.
- MPI & Colour Reconnection parameters tuned are:



#### "A2" Tune → UE/MB Tune

- 200 anchor points chosen each 1M events. ٠
- Observables used:  $N_{ch}$ , charged track  $p_{T}$ ,  $< p_{T} >$ ,  $\eta$ . ٠

 $1/N_{
m ev}\,1/2\pi p_{\perp}\,{
m d}\sigma/{
m d}\eta{
m d}p_{\perp}$ 

 $10^{-1}$ 

 $10^{-2}$ 

 $10^{-3}$ 

 $10^{-4}$ 

 $10^{-5}$ 

 $10^{-6}$ 

 $10^{-7}$ 

 $10^{-8}$ 

10<sup>-9</sup>

 $10^{-10}$ 

MC/data 1.2

1.4

0.8

0.6

5

10

Studied dependence of tuned parameters on several LO & NLO PDF sets:

Soft-OCD

|             | PDF                         | pT0Ref | ecomPow | a1   | reconnectRange | Tune:pp |   |                       |
|-------------|-----------------------------|--------|---------|------|----------------|---------|---|-----------------------|
|             | Minimum-bias tunes: A2      |        |         |      |                |         |   | LO PDF's only for AM2 |
|             | CTEQ 6L1                    | 2.18   | 0.22    | 0.06 | 1.55           | 7       |   | tune                  |
| Recommended | MSTW2008 LO                 | 1.90   | 0.30    | 0.03 | 2.28           | 8       |   |                       |
| tune        | Underlying event tunes: AU2 |        |         |      |                |         |   |                       |
|             | CTEQ 6L1                    | 2.13   | 0.21    | 0.00 | 2.21           | 9       |   |                       |
|             | NNPDF 2.1 LO                | 1.98   | 0.18    | 0.04 | 3.63           | _       |   |                       |
|             | MSTW2008 LO                 | 1.87   | 0.28    | 0.01 | 5.32           | 10      |   |                       |
|             | NNPDF 2.1 NLO               | 1.74   | 0.17    | 0.08 | 8.63           | _       |   | LO. mLO & NLO         |
|             | CTEQ 6.6                    | 1.73   | 0.16    | 0.03 | 5.12           | _       |   | DDE's for ALI2 tune   |
|             | CT10                        | 1.70   | 0.16    | 0.10 | 4.67           | 11      |   | PDF S IOI AUZ luile   |
|             | MSTW2008 NLO                | 1.51   | 0.19    | 0.28 | 5.79           | _       |   |                       |
|             | MRST2007 LO*                | 2.39   | 0.24    | 0.01 | 1.76           | _       |   |                       |
|             | MRST2007 LO**               | 2.57   | 0.23    | 0.01 | 1.47           | _       | J |                       |

#### **Results:**

→ AM2 tune demonstrates improvement over author 4C(x) tunes. → Improved Pile-up simulation. → Reference for MB and UE (AU2) modelling @ ATLAS.

Charged particle  $p_{T}$  at 7TeV, for  $N_{ch} \ge 6$ 



Charged Multiplicity  $\ge$  6 at 7TeV, track p<sub>T</sub> > 500MeV

120

 $N_{ch}$ 

# 

# "A14" Tunes (Global Tune)

#### **MPI & Parton Shower Tune**

ATL-PHYS-PUB-2014-021

### "A14" Global Tune → MPI & PS

- Only considered MPI tuning at present → "A2" tunes
  - Many observables sensitive to both MPI & PS parameters  $\rightarrow p_{T}^{z}$  (ISR + MPI), 3/2 jet ratio (ISR + FSR)
  - Especially for Pythia8 where showering & MPI are interleaved.
- Parton Shower modelling → Phenomenological components
  - Parameter value choice  $\rightarrow \alpha_s$  values for ISR/FSR, evolution cut-offs, ....
- "A14" tune performs simultaneous MPI & Shower tuning
- Tuning with ATLAS run 1 data @ √s = 7TeV.
  - UE in transverse region defined by leading  $p_T$  track/calorimeter jets  $\rightarrow \langle p_T \rangle$ ,  $N_{ch}$ ,  $\sum p_T$ , etc...
  - FSR: Jet structure → track jet p<sub>T</sub>, jet mass, jet shapes in inclusive jet/ttbar samples, etc...
  - ISR: Additional jet emissions → Di-Jet Decorrelation, 3/2 jet ratio, ttbar gap fractions



Â

- Only considered MPI tuning at present → "A2" tunes
  - Many observables sensitive to both MPI & PS parameters  $\rightarrow p_{T}^{z}$  (ISR + MPI), 3/2 jet ratio (ISR + FSR)
  - Especially for Pythia8 where showering & MPI are interleaved.
- Parton Shower modelling → Phenomenological components
  - Parameter value choice  $\rightarrow \alpha_s$  values for ISR/FSR, evolution cut-offs, ....
- "A14" tune performs simultaneous MPI & Shower tuning



- UE in transverse region defined by leadin  $p_T$  track/calorimeter jet  $\rightarrow \langle p_T \rangle$ ,  $N_{ch}$ ,  $\sum p_T$ , etc...
- FSR: Jet structure → track jet p<sub>T</sub>, jet mass, jet shapes in inclusive jet/ttbar samples, etc...
- ISR: Additional jet emissions → Di-Jet Decorrelation, 3/2 jet ratio, ttbar gap fractions



Ê

- Only considered MPI tuning at present → "A2" tunes
  - Many observables sensitive to both MPI & PS parameters  $\rightarrow p_{\tau}^{z}$  (ISR + MPI), 3/2 jet ratio (ISR + FSR)
  - Especially for Pythia8 where showering & MPI are interleaved.
- Parton Shower modelling → Phenomenological components
  - Parameter value choice  $\rightarrow \alpha_s$  values for ISR/FSR, evolution cut-offs, ....
- "A14" tune performs simultaneous MPI & Shower tuning
- Tuning with ATLAS run 1 data @ √s = 7TeV.
  - UE in transverse region defined by leading  $p_T$  track/calorimeter jets  $\rightarrow \langle p_T \rangle$ ,  $N_{ch}$ ,  $\sum p_T$ , etc....
  - FSR: Jet structure → track jet p<sub>T</sub>, jet mass, jet shapes in inclusive jet/ttbar samples, etc...
  - ISR: Additional jet emissions → Di-Jet Decorrelation, 3/2 jet ratio, ttbar gap fractions

Gap Fraction defined as:

$$f(Q_0) = n(Q_0)/N$$

Where:

- $n(Q_o)$  = number of events with no additional jet with  $p_{\tau} > Q_o$ in a central rapidity region
  - N = number of ttbar events



Ê

#### Tuning based on Pythia8.186 Monash tune + simultaneous variation of 10 parameters:

| Parameter                           | Definition                                  | Sampling range |                  |
|-------------------------------------|---------------------------------------------|----------------|------------------|
| SigmaProcess:alphaSvalue            | The $\alpha_S$ value at scale $Q^2 = M_Z^2$ | 0.12 - 0.15    | Hard Scatter     |
| SpaceShower:pT0Ref                  | ISR $p_{\rm T}$ cutoff                      | 0.75 – 2.5     | 5                |
| SpaceShower:pTmaxFudge              | Mult. factor on max ISR evolution scale     | 0.5 – 1.5      |                  |
| SpaceShower:pTdampFudge             | Factorisation/renorm scale damping          | 1.0 – 1.5      | Parton Shower    |
| SpaceShower:alphaSvalue             | ISR $\alpha_S$                              | 0.10 - 0.15    |                  |
| TimeShower:alphaSvalue              | FSR $\alpha_S$                              | 0.10 - 0.15    | J.               |
| BeamRemnants:primordialKThard       | Hard interaction primordial $k_{\perp}$     | 1.5 – 2.0      |                  |
| MultipartonInteractions:pT0Ref      | MPI $p_{\rm T}$ cutoff                      | 1.5 – 3.0      | Non-Perturbative |
| MultipartonInteractions:alphaSvalue | MPI $\alpha_S$                              | 0.10 - 0.15    |                  |
| BeamRemnants:reconnectRange         | CR strength                                 | 1.0 – 10.0     | J                |

Standard tuning methodology applied

→ Each observable bin parametrised as a 10-dimensional 3<sup>rd</sup> order polynomial.

- •••
- Tune performed for a set of 4 PDF's → CTEQ6L1, MSTW2008LO, NNPDF23LO & HERAPDF15LO

#### • Tuning based on Pythia8.186 Monash tune + simultaneous variation of **10 parameters**:

| Parameter                           | Definition                                  | Sampling range | CTEQ  | MSTW  | NNPDF | HERA  |
|-------------------------------------|---------------------------------------------|----------------|-------|-------|-------|-------|
| SigmaProcess:alphaSvalue            | The $\alpha_S$ value at scale $Q^2 = M_Z^2$ | 0.12 – 0.15    | 0.144 | 0.140 | 0.140 | 0.141 |
| SpaceShower:pT0Ref                  | ISR $p_{\rm T}$ cutoff                      | 0.75 – 2.5     | 1.30  | 1.62  | 1.56  | 1.61  |
| SpaceShower:pTmaxFudge              | Mult. factor on max ISR evolution scale     | 0.5 – 1.5      | 0.95  | 0.92  | 0.91  | 0.95  |
| SpaceShower:pTdampFudge             | Factorisation/renorm scale damping          | 1.0 – 1.5      | 1.21  | 1.14  | 1.05  | 1.10  |
| SpaceShower:alphaSvalue             | ISR $\alpha_S$                              | 0.10 - 0.15    | 0.125 | 0.129 | 0.127 | 0.128 |
| TimeShower:alphaSvalue              | FSR $\alpha_S$                              | 0.10 - 0.15    | 0.126 | 0.129 | 0.127 | 0.130 |
| BeamRemnants:primordialKThard       | Hard interaction primordial $k_{\perp}$     | 1.5 – 2.0      | 1.72  | 1.82  | 1.88  | 1.83  |
| MultipartonInteractions:pT0Ref      | MPI $p_{\rm T}$ cutoff                      | 1.5 – 3.0      | 1.98  | 2.22  | 2.09  | 2.14  |
| MultipartonInteractions:alphaSvalue | MPI $\alpha_S$                              | 0.10 - 0.15    | 0.118 | 0.127 | 0.126 | 0.123 |
| BeamRemnants:reconnectRange         | CR strength                                 | 1.0 – 10.0     | 2.08  | 1.87  | 1.71  | 1.78  |

•  $\alpha_{s}$  tuning results similar for all PDFs

Hard process  $\alpha_s$  higher than default 0.1265

 $\alpha_s$ (FSR) <  $\alpha_s$ (default/Monash) tune  $\rightarrow$  Tension in LEP vs LHC jet observables?

#### • Tuning based on Pythia8.186 Monash tune + simultaneous variation of **10 parameters**:

| Parameter                           | Definition                                  | Sampling range | CTEQ  | MSTW  | NNPDF | HERA  |
|-------------------------------------|---------------------------------------------|----------------|-------|-------|-------|-------|
| SigmaProcess:alphaSvalue            | The $\alpha_S$ value at scale $Q^2 = M_Z^2$ | 0.12 – 0.15    | 0.144 | 0.140 | 0.140 | 0.141 |
| SpaceShower:pT0Ref                  | ISR $p_{\rm T}$ cutoff                      | 0.75 – 2.5     | 1.30  | 1.62  | 1.56  | 1.61  |
| SpaceShower:pTmaxFudge              | Mult. factor on max ISR evolution scale     | 0.5 – 1.5      | 0.95  | 0.92  | 0.91  | 0.95  |
| SpaceShower:pTdampFudge             | Factorisation/renorm scale damping          | 1.0 – 1.5      | 1.21  | 1.14  | 1.05  | 1.10  |
| SpaceShower:alphaSvalue             | ISR $\alpha_S$                              | 0.10 - 0.15    | 0.125 | 0.129 | 0.127 | 0.128 |
| TimeShower:alphaSvalue              | FSR $\alpha_S$                              | 0.10 - 0.15    | 0.126 | 0.129 | 0.127 | 0.130 |
| BeamRemnants:primordialKThard       | Hard interaction primordial $k_{\perp}$     | 1.5 – 2.0      | 1.72  | 1.82  | 1.88  | 1.83  |
| MultipartonInteractions:pT0Ref      | MPI $p_{\rm T}$ cutoff                      | 1.5 – 3.0      | 1.98  | 2.22  | 2.09  | 2.14  |
| MultipartonInteractions:alphaSvalue | MPI $\alpha_S$                              | 0.10 - 0.15    | 0.118 | 0.127 | 0.126 | 0.123 |
| BeamRemnants:reconnectRange         | CR strength                                 | 1.0 – 10.0     | 2.08  | 1.87  | 1.71  | 1.78  |

α<sub>s</sub> tuning results similar for all PDFs
 Hard process α<sub>s</sub> higher than default 0.1265

 $\alpha_{s}$ (FSR) <  $\alpha_{s}$ (default/Monash) tune  $\rightarrow$  Tension in LEP vs LHC jet observables?



 Damped Shower in ttbar process includes some emissions above factorisation scale. → Improved agreement in ttbar gap fraction.





3-to-2 jet ratio improvement

 at expense of σ<sub>3</sub>/σ<sub>2</sub> ratio in soft events (p<sub>T lead</sub> < 100Gev).</li>
 → BSM use case, so sacrificed here.



## "A14" Global Tune: Systematic Variations

- Systematic variations for A14-NNPDF tune performed using eigentune Professor toolkit.
  - NNPDF chosen because it was most recent PDF & had error set.
  - (10 parameters) x (2 variations per parameter) → Total: 20 variations
- 20 variations too unwieldy.
  - Reduce to a subset of tune variations
  - 1 pair for Underlying Event → UE
  - 1 pair for Jet Structure → FSR
  - 3 pairs for extra jet production → ISR
- ISR uncertainties could not be reduced to a smaller subset. → Reduction is physics dependent.



# 

# "ATTBAR" Tunes Parton Shower & NLO ME (ttbar) ATL-PHYS-PUB-2015-007

- ttbar receives significant corrections at NLO.
  - → Pythia8 approx NLO corrections via  $dP_{ISR}/dp_T^2 \propto \frac{1}{p_T^2} \cdot \frac{k^2 M^2}{k^2 M^2 + p_T^2}$



- LO+PS often not sufficient for many process, ttbar especially.
- LHC measurements @  $\sqrt{s} = 7$ TeV accurate enough for ttbar tuning.
  - → Compare results to global ("A14"), dedicated Z (AZNLO) or even LEP tuning

  - → ttbar gluon-gluon dominated production
     → Z is quark-quark dominated production
     Testimony to "universality"?
- ATLAS measurements of:
  - $\rightarrow$  Jet multiplicities/p<sub>T</sub>
  - → Central Gap Fractions
  - $\rightarrow$  ttbar jet shapes
- Tuning in 2 steps:
  - → Tuning of Pythia 8.201 (normalised to data)
    - Measure sensitivity of observables to ISR/FSR & tune separately
    - Factorisation of ISR & FSR not exact
      - → Combined tuning
  - $\rightarrow$  Application of tune to matched to Powheg/MG aMC@NLO.
    - Powheg hdamp factor for ISR real radiation.
    - aMC@NLO upper/lower scale factor for real radiation subtraction term.

- b-jet modelling also identified as an issue in Pythia 8.201.
  - →  $\alpha^{\text{FSR}}_{s}$  value tension for light vs b-jets.
  - $\rightarrow \chi^2/dof$  of light-jet closer to unity than b-jet. Indicates b-jet mismodelling
  - $\rightarrow$  Therefore simultaneous tune only uses light jet shapes



r

Ē

- Pythia8 standalone tune is based on 4C & Monash tunes.
  - $\rightarrow$  "ATTBAR" is based on Monash with NNPDF23LO PDF
  - $\rightarrow\,$  Other is 4C tune with CTEQ6L1 PDF
- Correlated experimental uncertainties considered for first time.
  - $\rightarrow\,$  Taken into account in MC tuning via the  $\chi^2$  definition
  - → Reduces uncertainties
- Parameters tuned for Pythia 8.201 are ISR/FSR parameters:



- Powheg+Pythia 8.201 ("ATTBAR-POWHEG")
  - $\rightarrow$  hdamp = h x m<sub>top</sub> factor: "h" is tunable parameter

```
→ Result: h = 1.8^{+0.4}_{-0.3}
```

- MadGraph5\_aMC@NLO + Pythia 8.201 tuning ("ATTBAR-MG5aMC@NLO")
  - $\rightarrow$  **f** = frac\_upp = frac\_down
  - → Result: f = 0.58 (+- 0.03) "Global Recoil" or f = 0.54 (+- 0.03) "Local Recoil"

Ē

 Powheg+Pythia 8.201 tuning to jet multiplicity, jet p<sub>T</sub> & gap fraction (Q<sub>0</sub>) offered optimal tuned value:



- MadGraph5\_aMC@NLO tuned using both "global recoil" & "local recoil".
  - $\rightarrow$  Global recoil favoured theoretically, but local recoil models data more accurately.
  - $\rightarrow \chi^2$ /dof closer to unity in local recoil case



 Powheg+Pythia 8.201 comparison of ATTBAR, ATTBAR-Powheg & ATTBARaMC@NLO:





# 

# <u>"MG5aMC@NLO(-TTBAR)" Tunes</u>

#### Parton Shower & MPI tune with NLO ME attachment

ATL-PHYS-PUB-2015-048

# MG5aMC@NLO(-TTBAR)

- Dedicated tune of Pythia 8.186 PS + MPI, when matched to the NLO ME generator MadGraph5\_aMC@NLO.
- Two tunes available, "MG5aMC@ NLO" & "MG5aMC@NLO-TTBAR".
  - → General tune to inclusive jet, ttbar & Z events.
  - → "\*\*\*-TTBAR" tune to ttbar events.
  - → Based on "A14" global tune.
- Z & ttbar events tuned using  $\sqrt{s} = 7\text{TeV} 2011 \text{ data}$ Inclusive jet events tuned using  $\sqrt{s} = 7\text{TeV} 2010 \text{ data}$  (stats limited)
- Observables categorised into 3 categories:

#### <u>ttbar:</u>

→ Jet shapes, differential jet multiplicity/ $p_{\tau}$  & gap fraction.

- Z Events:
  - →  $Z \rightarrow ee$  uses  $\Phi_n^* \& Z \rightarrow \mu\mu$  uses  $p_T$
  - $\rightarrow N_{ch}, \Sigma p_{T}.$

Inclusive Jets:

- $\rightarrow$  jet shapes, dijet decorrelation, jet rapidity etc...
- 2 PDFs used:
  - → CT10 used for MG5\_aMC@ NLO (NLO PDF)
  - → NNPDF23LO for Pythia 8.186 (LO PDF).

Â

# MG5aMC@NLO(-TTBAR)



• 7 parameters entered into tune:

| Parameter                                 | Pythia8 settings                    | Definition                              | Sampling range |
|-------------------------------------------|-------------------------------------|-----------------------------------------|----------------|
| $p_{T0,Ref}^{ISR}$ [GeV]                  | SpaceShower:pT0Ref                  | ISR $p_{\rm T}$ cutoff                  | 0.75 - 2.5     |
| $\alpha_S^{\text{ISR}}$                   | SpaceShower:alphaSvalue             | ISR $\alpha_S$                          | 0.115 - 0.140  |
| $p_{\mathrm{T,min}}^{\mathrm{FSR}}$ [GeV] | TimeShower:pTmin                    | FSR $p_{\rm T}$ cutoff                  | 0.5 - 2.0      |
| $\alpha_S^{\rm FSR}$                      | TimeShower:alphaSvalue              | FSR $\alpha_S$                          | 0.115 - 0.15   |
| $p_{\rm T0,Ref}^{\rm MPI}$ [GeV]          | MultipartonInteractions:pT0Ref      | MPI $p_{\rm T}$ cutoff                  | 1.5 - 3.0      |
| $\alpha_S^{MPI}$                          | MultipartonInteractions:alphaSvalue | MPI $\alpha_S$                          | 0.115 - 0.140  |
| P. k <sub>T,hard</sub> [GeV]              | BeamRemnants:primordialKThard       | Hard interaction primordial $k_{\perp}$ | 1.5 - 2.0      |

- Matter profile uses 2D Gaussian model where  $\langle k_T \rangle^2 = \sigma^2$ 
  - $\rightarrow$  I.e square of the mean primordial k<sub>T</sub> functions as width of 2D Gaussian matter profile
- Following recommendations of authors "Global Recoil" is set.
  - → Despite previous tunes showing better agreement, theoretical consistency was favoured.
- Standard Tuning Methodology
  - → 500 parameter points sample 7-dimensional hypercube
  - → 3<sup>rd</sup> order polynomial for each dimension

→ ....

- Larger weights applied to Z & ttbar events
  - → Non-correlated observables offer significant control in tuning
  - → E.g Drell-Yan process perfect for ISR tuning. No FSR overlap. Thus higher weight.

# <u>MG5aMC@NLO(-TTBAR)</u>

Â

 $\alpha_s^{MPI}$ 

 $\alpha_{e}^{FSR}$ 

• 7 parameters entered into tune  $\rightarrow$  A15 Tune results:



 $\alpha_{s}^{ISR}$ 

# <u>MG5aMC@NLO(-TTBAR)</u>

#### What to Take away

- Marginal improvement in modelling from previous tunes.
  - $\rightarrow$  However several key features address previous tensions observed.



# **Conclusion**

- A2 series:
  - $\rightarrow\,$  Forms basis of pileup modelling @ ATLAS
  - $\rightarrow$  Therefore concerned with MB tuning over UE

# <u>Conclusion</u>

- A2 series:
  - $\rightarrow\,$  Forms basis of pileup modelling @ ATLAS
  - $\rightarrow$  Therefore concerned with MB tuning over UE
- A14 series:
  - $\rightarrow$  Base Pythia8 tune for UE & Parton Shower used @ ATLAS
  - →  $\alpha^{A_{14}}(FSR) << \alpha^{Monash}(FSR) → Tension?$
  - → Systematic Error sets for UE, FSR & ISR

# <u>Conclusion</u>

#### • A2 series:

- $\rightarrow\,$  Forms basis of pileup modelling @ ATLAS
- → Therefore concerned with MB tuning over UE
- A14 series:
  - $\rightarrow$  Base Pythia8 tune for UE & Parton Shower used @ ATLAS
  - →  $\alpha^{A14}_{s}$ (FSR) <<  $\alpha^{Monash}_{s}$ (FSR) → Tension?
  - → Systematic Error sets for UE, FSR & ISR
- ATTBAR series:
  - → First dedicated ttbar tune
  - → First time experimental correlations considered
  - $\rightarrow$  Identified b-jet mismodelling concerns  $\rightarrow$  Resolved A14 & LEP  $\alpha_s$  disagreement
  - → MG5\_aMC@NLO demonstrated local recoil offers better agreement to data
  - → Most accurate tune for ttbar events

# <u>Conclusion</u>

#### • A2 series:

- $\rightarrow\,$  Forms basis of pileup modelling @ ATLAS
- → Therefore concerned with MB tuning over UE
- A14 series:
  - $\rightarrow$  Base Pythia8 tune for UE & Parton Shower used @ ATLAS
  - →  $\alpha^{A_{14}}(FSR) << \alpha^{Monash}(FSR) \rightarrow Tension?$
  - → Systematic Error sets for UE, FSR & ISR
- ATTBAR series:
  - → First dedicated ttbar tune
  - → First time experimental correlations considered
  - $\rightarrow$  Identified b-jet mismodelling concerns  $\rightarrow$  Resolved A14 & LEP  $\alpha_s$  disagreement
  - → MG5\_aMC@NLO demonstrated local recoil offers better agreement to data
  - → Most accurate tune for ttbar events
- A15 resolves many issues observed over the previous tunes:
  - → "ME + PS(tuned)"  $\approx$  "{ME + PS}(tuned)" (doesn't matter which)
  - $\rightarrow \alpha_{s}$  (FSR) between A14 & LEP rectified ~ b-jet modelling & weight of FSR sensitive observables
  - → MG5aMC@NLO global recoil tune only
  - $\rightarrow$  Offers the best general purpose tune for inclusive, ttbar & Z events.

Î

# Backup



#### Monte Carlo Event Model

# 

#### Perturbative QCD/QED:



#### Monte Carlo Event Model

#### Perturbative QCD/QED:



#### <u>Monte Carlo Event Model</u>

#### Perturbative QCD/QED:



#### <u>Monte Carlo Event Model</u>

# 

#### Perturbative QCD/QED:



## **Tuning Aspects of Monte Carlo**

#### What can we tune then?

- Non-perturbative parameters can not be derived from first principles, so require tuning.  $\sqrt{}$
- Higher order corrections absorbed into physical parameters  $\rightarrow$  E.g ISR/FSR renormalisation scale tuned via  $\alpha_s$  values, or Powheg hdamp.
- Regions of high  $p_{\tau}$  important for new physics  $\rightarrow$  Modelled by first principles.

#### **Parameters:**

#### Sensitive Observables:

V

X

Â

| Hard Scattering                 | $\mu_{f}$ , $\mu_{r}$ scales, hdamp, etc                              | Ideally predicted by first princples → Scale variation to account for HO corrections       |  |  |  |
|---------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|
| Beam Remnants                   | Primordial $k_{\tau}$ , impact 'b',                                   | Tune with Z candle p <sup>z</sup> <sub>T</sub> < 5GeV                                      |  |  |  |
| Parton Shower (ISR, FSR)        | $\alpha_s(M_z)$ , shower IR cutoff (p <sup>ISR</sup> <sub>T</sub> ,), | Jet Shapes, p <sup>z</sup> <sub>T</sub> , p <sup>jet</sup> T, Tuned<br>With LEP & LHC data |  |  |  |
| Multi-Parton Interactions (MPI) | infrared cut-off, $\boldsymbol{\alpha}_{_{S}}$ (MPI),                 | Hadron collider data using MB and UE observables                                           |  |  |  |
| Color Reconnection              | Range, Probability,                                                   | Underlying Event, MB & ttbar                                                               |  |  |  |
| Hadronisation                   | Fragementation function,<br>HF fragmentation fraction,                | LEP data for ee → Z → hadrons<br>(light/HF)                                                |  |  |  |
| Decays                          | Lifetime & Decay widths                                               | PDG validated with data                                                                    |  |  |  |

#### Monte Carlo Uses at ATLAS



#### **Unfolding:**

 Extrapolation from Reconstruction to Particle Level

#### **Background Estimates:**

- Data control regions often define background normalisation
- MC define differential cross-section shapes.
- Over-tuning of non-perturbative parameters may hide New Physics

#### **Pile-up simulation + Calibration:**

- Overlay hard event with 'n' inclusive inelastic scatters → Pile-up
  - Useful for measuring pileup systematic uncertainties
  - Zero bias overlay as possible pileup simulation alternative.

 Jet identification and calibration sensitive to pileup. → Diffuse noise in reconstructed jets



#### Tuning methodology → The Basics

### Methodology:

- 1. Choose parameter & parameter ranges
- 2. Choose relevant experimental data
  - i. Process & fiducial cuts
  - ii. Sensitive Observables
- 3. Sample N-parameter hypercube  $\rightarrow$  Anchor Points
- 4. Generate samples for 'n' anchor points
- 5. Analytic approx of observable response to parameter changes.
- 6. X<sup>2</sup> minimisation of analytic approximation over full MC parameter space in MC/Data comparison.

#### **Tools**

- Human intuition
  Rivet Tool Kit
  - Particle Level Analysis
  - Data Analysis repository
- Professor
  - Random Sampling of parameter hypercube
  - Analytic approximation of observable response to parameters

$$C_{b}(\vec{P}) = a_{0}^{b} + \sum_{i} B_{i}^{b} p'_{i} + \sum_{i \leq j} C_{ij}^{b} p'_{i} p'_{j} + \dots$$

 Minimisation procedure for optimal parameter values





| Parameter                           | Definition                                  | Sampling range |   | EQ   | MSTW | NNPDF | HERA  |       |
|-------------------------------------|---------------------------------------------|----------------|---|------|------|-------|-------|-------|
| SigmaProcess:alphaSvalue            | The $\alpha_S$ value at scale $Q^2 = M_Z^2$ | 0.12           | _ | 0.15 | 44   | 0.140 | 0.140 | 0.141 |
| SpaceShower:pT0Ref                  | ISR $p_{\rm T}$ cutoff                      | 0.75           | _ | 2.5  | 30   | 1.62  | 1.56  | 1.61  |
| SpaceShower:pTmaxFudge              | Mult. factor on max ISR evolution scale     | 0.5            | _ | 1.5  | 95   | 0.92  | 0.91  | 0.95  |
| SpaceShower:pTdampFudge             | Factorisation/renorm scale damping          | 1.0            | _ | 1.5  | 21   | 1.14  | 1.05  | 1.10  |
| SpaceShower:alphaSvalue             | ISR $\alpha_S$                              | 0.10           | - | 0.15 | 25   | 0.129 | 0.127 | 0.128 |
| TimeShower:alphaSvalue              | FSR $\alpha_S$                              | 0.10           | _ | 0.15 | 26   | 0.129 | 0.127 | 0.130 |
| BeamRemnants:primordialKThard       | Hard interaction primordial $k_{\perp}$     | 1.5            | - | 2.0  | 72   | 1.82  | 1.88  | 1.83  |
| MultipartonInteractions:pT0Ref      | MPI $p_{\rm T}$ cutoff                      | 1.5            | _ | 3.0  | 98   | 2.22  | 2.09  | 2.14  |
| MultipartonInteractions:alphaSvalue | MPI $\alpha_S$                              | 0.10           | _ | 0.15 | 18   | 0.127 | 0.126 | 0.123 |
| BeamRemnants:reconnectRange         | CR strength                                 | 1.0            | _ | 10.0 | 08   | 1.87  | 1.71  | 1.78  |

- α<sub>s</sub> tuning results similar for all PDFs Hard process α<sub>s</sub> higher than default 0.1265 α<sub>s</sub>(FSR) < α<sub>s</sub>(default/Monash) tune → Tension in LEP vs LHC jet observables?
- Damped Shower in ttbar process includes some emissions above factorisation scale. → Improved agreement in ttbar gap fraction.









3-to-2 jet ratio improvement

 → at expense of σ<sub>3</sub>/σ<sub>2</sub> ratio in soft events (p<sub>T lead</sub> < 100Gev).</li>
 → BSM use case, so sacrificed here.



• Sensitivity studies in single ISR/FSR tuning, using the definition:

$$S_{i} = \frac{\partial MC(\vec{p})}{\partial p_{i}} \times \frac{|p_{0,i}| + ew_{p_{i}}}{|MC_{p_{0}}| + ew_{MC}}$$

Demonstrates the sensitivity of observables to ISR, FSR components:



- b-jet modelling also identified as an issue in Pythia 8.201.
  - →  $\alpha^{\text{FSR}}_{s}$  value tension for light vs b-jets.
  - $\rightarrow \chi^2$ /dof of light-jet closer to unity than b-jet. Indicates b-jet mismodelling
  - $\rightarrow$  Therefore simultaneous tune only uses light jet shapes

