

Deutsches Elektronen-Synchrotron (DESY), Hamburg

Study of high p_T particle production from Double Parton Scatterings

Paolo Gunnellini on behalf of the CMS collaboration

MPI@LHC 2015 Trieste (Italy) November 2015

paolo.gunnellini@desy.de

MPI@LHC2015

Outline

- Introduction
- Choice of sensitive observables
- Choice of physics channels
- Summary of recent DPS measurements
- Extraction of the DPS contribution
- Other DPS-sensitive measurements
- Summary and conclusion

Introduction: the Underlying Event

Choice of sensitive observables (I): a four-jet scenario

A four-jet final state may arise from one or two chains:

• the two additional jets may be produced via PS or a 2nd hard scattering

! Selection of jet pairs at different scales helps the jet association !

Choice of sensitive observables (II): a four-jet scenario

Which regions of the phase space are interesting for DPS detection? Studies of SPS and DPS contributions performed with PYTHIA8:

Selection of a four-jet final state in $|\eta| < 4.7$ at two different p_T thresholds (20 and 50 GeV)

A SIMPLE scenario:

- SPS: MPI contribution switched off
- DPS: Two hard scatterings at the parton level forced to happen w/o parton shower

Choice of physics channels

MPI@LHC2015

Measurement of a four-jet final state

paolo.gunnellini@desy.de

MPI@LHC2015

Measurement of a four-jet final state with b-jets

MPI@LHC2015

23rd November 2015

Measurement of a W+dijet final state

Event selection

Presence of a muon with $p_T > 35$ GeV in $|\eta| < 2.1$ and $E_T^{miss} > 50$ GeV + at least 2 jets: $p_T > 20$ GeV in $|\eta| < 2.0$

paolo.gunnellini@desy.de

MPI@LHC2015

Measurement of a final state with γ + 3 jets

Event selection

Selection of a photon and at least three jets in
$$|\eta| < 2.5$$
:
 $\gamma+1$ jet: $p_T > 75$ GeV, 2 jets: $p_T > 20$ GeV

No difference between predictions with and w/o MPI

paolo.gunnellini@desy.de

MPI@LHC2015

10

How can one extract the DPS contribution from the measured observables?

How to extract σ_{eff} : the template method

- Measurement of DPS-sensitive observables
- Definition of signal and background
- Fit the relative fraction of signal and background
- The signal fraction translates into a value for $\sigma_{\it eff}$

 $\begin{array}{l} \mbox{Plot from Ramandeep Kumar} \\ \mbox{W + jets channel} \end{array}$

$$\sigma_{eff} = \frac{\sigma_A \cdot \sigma_B}{\sigma_{DPS}}$$
$$\sigma_{eff} = \frac{N_A^{ev}}{N_{A+B(DPS)}^{ev}} \cdot \sigma_B$$
$$\sigma_{eff} = \frac{N_A^{ev}}{\sigma_{A+B(DPS)}} \cdot \sigma_B$$

 $f_{DPS} \cdot N_{A\perp B}^{ev}$

Extraction of σ_{eff} from W+dijet final state (CMS)

CONSIDERED OBSERVABLES: normalized ΔS and $\Delta^{rel} p_T$ BACKGROUND: MADGRAPH+P8 with hard MPI above 15 GeV excluded SIGNAL: Two mixed independent scatterings generated with P8 and MG+P8 DRIVING UNCERTAINTY: model dependence

 $\sigma_{\it eff}$ = 20.7 \pm 0.8 (stat.) \pm 6.6 (syst.) mb

The inclusive fit method

Experimental difficulties of the template method

- ightarrow How to define the background?
 - Good to exclude hard MPI..but no such possibility in some generators

\rightarrow How to define exclusive and inclusive events?

- N_{W+0j} and N_{W+2j} are sensitive to the jet scales
- \rightarrow These issues have an impact on the systematic uncertainty! Is there a way out?

The inclusive fit method

- Run predictions for different choices of UE parameters
- Fit the MC predictions to the considered observables
- Improve the data description with the examined model
- (..look at the corresponding σ_{eff} ..)

Extraction of σ_{eff} in four-jet final states

paolo.gunnellini@desy.de

MPI@LHC2015

Where do we stand now?

- Observables sensitive to DPS measured in various final states
- Values of σ_{eff} extracted in W+dijet, four-jet and WW
- Ongoing extraction for the other channels

Channel dependence Scale dependence Flavour dependence

Investigation of various models Large uncertainties STILL MUCH TO DO! ...and it's not all! No extraction of a value of σ_{eff} but indication of need for DPS !

Inclusive double J/ψ production

Event selection

Presence of two pairs of opposite-charge muons in $|\eta|<$ 2.2; the two pairs must have invariant mass close to J/ ψ

Correction and phase-space extrapolation assuming unpolarized production

SPS background should dominate the fall at low Δy DPS expected to fill the high Δy region

Useful baseline for building reliable models of J/ψ production before extracting DPS signal

What to do next?

\rightarrow Measurements for LHC Run 2

Scale of secondary scatter(s)	Benchmark for		W(μν)+W(μν)		Energy dependence
	the detection of the DPS	W(μν)+bb ν+3i	Z(μμ)+bb	Channel dependence Scale dependence Flavour dependence	
	Double 1/1	4j	ν(μν)+jj	Z(μμ)+jj	ightarrow more statistics $ ightarrow$ double differential
	Semi-hard (Minimum Bias) j+	·UE	W+UE	Ζ(μμ)+UE	distributions → access to diboson final states → DPS with Higgs
	en mann e nammer e se a men		Scale of prin	nary scatter	

Joined effort between phenomenological and experimental community

Personal remarks and summary

- Important to study first the sensitivity of the physics channel and the considered observables
- Important to produce unfolded results in order to be able to compare predictions from any model
- Double parton scattering is essential for proton structure as well as for background to physics searches
- Several final states can be used for DPS detection
 W+jets, four-jets, two b- + two other jets...
- The measured final states clearly indicate the need for DPS for describing the experimental results
- Future: measure energy dependence get a unified picture of DPS with UE- and MB-sensitive measurements

Personal remarks and summary

- Important to study first the sensitivity of the physics channel and the considered observables
- Important to produce unfolded results in order to be able to compare predictions from any model
- Double parton scattering is essential for proton structure as well as for background to physics searches
- Several final states can be used for DPS detection
 W+jets, four-jets, two b- + two other jets, γ+three jets, WW...
- The measured final states clearly indicate the need for DPS for describing the experimental results
- Future: measure energy dependence get a unified picture of DPS with UE- and MB-sensitive measurements

BACK-UP SLIDES

Determination of σ_{eff} in the four-jet channel

Tuning the four-jet observables (Phys.Rev., D89, 2014) with PYTHIA8

Parameter	CDPSTP8S1-4j	CDPSTP8S2-4j	4C
MultipleInteractions:expPow	1.16	0.6921	2.0
MultipleInteractions:ecmPow	0.19*	0.345	0.19
MultipleInteractions:pT0ref	2.09*	2.125	2.09
BeamRemnants:reconnectRange	1.5* *=unchanged wrt 4C	6.526	1.5
χ^2/NdF	0.75	0.42	-
$\sigma_{eff} \ (mb)$	$21.3^{+1.7}_{-1.3}$	$19.0^{+4.7}_{-3.0}$	30.3

$$\sigma_{eff} = 19.0^{+4.7}_{-3.0} \text{ mb}
ightarrow \sigma_{eff}$$
 (Tune 4C) \sim 30.3 mb

Choice of sensitive observables

paolo.gunnellini@desy.de

23rd November 2015

D0 DPS analysis: γ +3jets and γ +b/c jet+2jets

SELECTION 1: $p_T^{\gamma} > 26 \text{ GeV}$, $p_T^{lead} > 35 \text{ GeV}$, $15 < p_T^{oth.} < 35 \text{ GeV}$ in $|\eta| < 2.5$ SELECTION 2: $p_T^{\gamma} > 26 \text{ GeV}$, $p_T^b > 35 \text{ GeV}$, $15 < p_T^{oth.} < 35 \text{ GeV}$ in $|\eta| < 2.5$ CONSIDERED OBSERVABLES: normalized ΔS btw γ -j and dijet systems BACKGROUND: SHERPA sample with MPI simulation off SIGNAL: Two independent events recorded from data DRIVING UNCERTAINTY: model dependence (only samples with MPI off!)

	CMS	ATLAS	D0/CDF
Background and signal should			
cover the full phase space	\checkmark	\checkmark	X
Use more than one MC event generator			
to correctly evaluate the model dependence	\checkmark	\checkmark	\checkmark
and the systematic uncertainty			
Use more than one variable			
for the DPS determination	\checkmark	Х	X

BUT..difficult to define the background template in the same way with different generators!

The proposed new approach

A FEW REMARKS WHEN USING THE TUNING METHOD:

- Investigation of the contribution of different matrix elements used with the same UE simulation
- Output Use more than one MC event generator to study the DPS contribution needed in different models
- Use more than one variable for the DPS determination
- Check if the new set of parameters spoil description of more inclusive distribution

How does the new tune perform in the UE description?

Measurement of charged particle mult. and p_T sum in hadronic events ATLAS Coll. Phys.Rev. D83 (2011) 112001

Tune	$\sigma_{\it eff}~({\rm mb})$
P8 4C	30.3
CDPSTP8S2	$19.0^{+4.7}_{-3.0}$

A tension appears between the description of "softer" and "harder" MPI within the same framework

Charged particle multiplicity (top) and *p*_T sum (bottom) for transverse (left) and toward (right) regions

paolo.gunnellini@desy.de

MPI@LHC2015

23rd November 2015

How to fix this?

 \rightarrow Attempt to implement in a tune a value of $\sigma_{\it eff}$ compatible with experimental measurements

HERWIG++ case: $\sigma_{eff} = \frac{28\pi}{\mu}$, with μ inverse proton radius

Tune UE-EE-5C (arXiv:1307.5015) : $\sigma_{eff} = 15 \text{ mb} (\text{CDF})$

It is not all..

- ATLAS Coll. Associated production of prompt J/ ψ mesons and W boson JHEP 04 (2014) 172
- LHCb Coll. *Prompt charm production in pp collisions* HEP 1206 (2012) 141
- ATLAS Coll. Measurement of the cross-section for W boson production in association with b-jets New J. Phys. 15 (2013) 033038
- LHCb Coll. Study of forward Z+jet production in pp collisions JHEP 01 (2014) 033
- CMS Coll. Measurement of the cross section and angular correlations for associated production of a Z boson with b hadrons JHEP 12 (2013) 039
- CMS Coll. *Measurement of Prompt Double J/psi Production in pp Collisions* JHEP 1409 (2014) 094
- ALICE Coll. J/psi production as a function of charged particle multiplicity in pp collisions at 7 TeV Phys.Lett.B 712, 165 (2012)

No extraction of a value of $\sigma_{\rm eff}$ but clear indication of need for DPS !

Cross section measurements sensitive to DPS

ATLAS Collaboration: "Measurements of W+prompt J/ ψ in *pp* collisions at 7 TeV" JHEP 04 (2014) 172

ATLAS Collaboration: "Measurement of the cross-section for W boson production in association with b-jets" New J. Phys. 15 (2013) 033038

Measurements compatible with a DPS contribution with $\sigma_{e\!f\!f}$ \sim 15-20 mb

Keypoints of the choice of variables

- Observables which consider the whole final state are more sensitive to DPS
 - $\bullet~\Delta S,$ sum of transverse momenta, energy of the four objects
- A large phase space for additional radiation reduces the DPS sensitivity
 - Better selection with objects close in transverse momentum
 - BUT..more complicated migration effects (and unfolding procedure)

CMS strategy for the DPS measurement

Compare the data to your own favourite predictions!

4th (future) step: differential distributions with high luminosities..

$$\sigma_{AB}^{DPS} = \frac{m}{2} \frac{\sigma_A \sigma_B}{\sigma_{eff}}$$

Internal structure of the proton DPS background for any physics channel

 \rightarrow Which channels can be used to look for DPS signals?

(s)				
scatter	Benchmark for the detection of	W(μν)+bb	Z(μμ)+bb	Published by CMS and/or ATLAS
econdary	the DPS bb+jj	<u>γ+3j</u> W(μν)+jj	Ζ(μμ)+ jj	Published by D0 and/or CDF
ofs	Double J/Ψ			How can DPS be
Scale	Semi-hard j+UE (Minimum Bias)	W+UE	Z(μμ)+UE	detected?
		Scale of prin	nary scatter	

The Compact Muon Solenoid experiment

Angular correlations in Z+b-hadrons final states

Event selection

Presence of two leptons with $p_T > 20$ GeV in $|\eta| < 2.4$ with invariant mass close to the Z peak and two b-hadrons with $p_T > 15$ GeV in $|\eta| < 2$

