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Outline
• Proposed factorisation formulae for DPS.

• Ingredients for proving a factorisation formula, a la Collins-Soper-
Sterman (CSS). Necessity for the cancellation of so-called Glauber 
gluons to achieve factorisation.

• Demonstration of the cancellation of Glauber gluons in double Drell-
Yan at the one-gluon level in a simple model, to show the principles.

• Brief discussion (only) of all-order proof 
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Double Parton Scattering

We know that in order to make a prediction for any process at the LHC, we need a 
factorisation formula (always hadrons/low energy QCD involved). 

It's the same for double parton scattering. Postulated form for double parton 
scattering cross section based on analysis of lowest order Feynman diagrams:    
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Collinear double parton distribution (DPD)

Parton level cross sections

Symmetry factor

N. Paver, D. Treleani, Nuovo Cim. A70 (1982) 215.
M. Mekhfi, Phys. Rev. D32 (1985) 2371.
Diehl, Ostermeier and Schafer (JHEP 1203 (2012))
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Further assumptions

(DPD factorises)
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Factorisation formulae for DPS: qT << Q
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kT dependent DPD

For small final state transverse momentum (qi << Q), differential DPS cross section 
postulated to have the following form:

(Neglecting a possible soft factor + dependence of the kT-DPDs on rapidity regulator)

Diehl, Ostermeier and Schafer (JHEP 1203 (2012))

To what extent we prove these formulae hold in full QCD? Let's 
focus on the double Drell-Yan process to avoid complications with 
final state colour.
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Establishing factorisation – the CSS approach

How does one establish a leading power factorisation for a given observable?

To obtain a factorisation formula, need to identify IR leading power regions of 
Feynman graphs – i.e. small regions around the points at which certain 
particles go on shell, which despite being small are leading due to propagator 
denominators blowing up.

Here I review the original Collins-Soper-Sterman (CSS) method that has already 
been used to show factorisation for single Drell-Yan 

More precisely, need to find regions 
around pinch singularities – these are 
points where propagator denominators 
pinch the contour of the Feynman 
integral. Pinched Non-pinched

CSS Nucl. Phys. B261 (1985) 104, 
Nucl. Phys. B308 (1988) 833
Collins, pQCD book
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CSS Factorisation Analysis

Pinch singularities in Feynman graphs correspond to physically (classically) 
allowed processes.

Double Drell-Yan  (collinear factorisation)

Coleman-Norton theorem

(In general, also 
arbitrarily many 
longitudinally polarised 
collinear gluon 
connections to hard) 
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Side Note: Rescattering

N. Paver, D. Treleani, Z. Phys. C28 (1985) 187
R. Corke, T. Sjöstrand, JHEP 1001 (2010) 035

t

x

It has been proposed that aside from double (or 
multiple) parton scattering, parton rescattering 
might be an interesting process to consider. 

H
1

H
2

The trouble is that this sort of graph does not have 
a pinch singularity corresponding to the 
rescattering process, if two processes are hard. No 
classical process corresponding to rescattering.  

Almost on-shell parton
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Side Note: Rescattering

N. Paver, D. Treleani, Z. Phys. C28 (1985) 187
R. Corke, T. Sjöstrand, JHEP 1001 (2010) 035

t

x

It has been proposed that aside from double (or 
multiple) parton scattering, parton rescattering 
might be an interesting process to consider. 

H

This graph should be computed as 2 parton vs. 1 
parton “twist 4 x twist 2” process  
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Momentum Regions  

Scalings of loop momenta that can give leading power contributions:

1) Hard region – momentum with large 
virtuality (order Q)

2) Collinear region – momentum close to some 
beam/jet direction

3) (Central) soft region – all momentum 
components small and of same order

p/+ component

n/- component

transverse component

(for example)

p
n

Also need to do a power-counting analysis to determine if region around a 
pinch singularity is leading
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4) Glauber region – all momentum 
components small, but transverse 
components much larger than longitudinal 
ones 

Canonical example:

AND...

Soft + Glauber particles

Momentum Regions  
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Side note: Glauber Gluons  

Note that Glauber gluons are actually the momentum mode responsible for low x 
physics/Regge behaviour. First example low x calculation in 'Quantum 
Chromodynamics at High Energy' by Kovchegov and Levin:   

l mainly transverse

“We see that in the high energy approximation the exchanged gluon has no 
longitudinal momentum: we will refer to it as an instantaneous or Coulomb gluon.”
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Glauber Gluons and Factorisation

Deriving a factorisation formula that includes Glauber gluons is problematic.

Starting picture (colourless V)

Collinear to proton A

Soft + Glauber particles

If blob S only contained central soft, then we 
could strip soft attachments to collinear J 
blobs using Ward identities, and factorise soft 
factor from J blobs.

Eikonal line in direction of J

Single parton + extra longitudinally 
polarised gluon attachments into hard
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p-k p

k
Eikonal piece

soft soft

Simple example:
Propagator denominator:

This manipulation is NOT POSSIBLE for Glauber gluons – two terms in 
denominator are of same order in Glauber region 

How do we get around this problem?

Only established way at present: try and show that that contribution from the 
Glauber region cancels (already used by CSS in the single Drell-Yan case) 

Let's see if the Glauber modes cancel for double Drell-Yan.

Glauber Gluons and Factorisation

'Cancels' here means that there is no remaining 'distinct' Glauber 
contribution – may be contributions from Glauber modes that can be 
absorbed into soft or collinear.
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One-gluon model calculation: Lowest-order diagrams

Real corrections:

One loop model calculation

'Parton-model' process:

Scalar 'hadron'

Massless scalar 'quarks'

Massive vector bosons
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Virtual corrections:

'Topologically factored graphs'

l+ only is trapped small – l- 
can be freely deformed away 
from origin (into region where 
l is collinear to P'). 

Very similar to situation in SIDIS – no Glauber 
contribution there too.  

More detailed checks that Glauber contributions are absent in 
the one-loop calculation are in the paper.

Neither l+ nor l- is 
trapped small

One-gluon model calculation: Lowest-order diagrams

Collins, Metz, Phys.Rev.Lett. 93 (2004) 252001
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One-gluon model calculation: More complex diagrams

Can extend this to arbitrarily complex one-gluon diagrams in the model. Most of 
the time we can route l+ and l- such that at least one of these components is not 
pinched.

Simplest diagram 
embedded in more 
complex structure 

Mainly -

Mainly +

No l- pinch No l+ pinch 

No l+ pinch No l+ pinch 
Both l-,l+ pinched! 
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Spectator-spectator interactions

Only type of exchange that is pinched in 
Glauber region is this 'final state' 
interaction between spectator partons. 

But we also have this type of 
pinched exchange in single 
Drell-Yan:

+ = 0

Sum over 
cuts

(Cutkosky rule)

We can show that this Glauber exchange cancels after a sum over possible cuts of 
the graph, using exactly the same technique that is used for single scattering.  

See e.g. Collins, pQCD book
              JG, JHEP 1407 (2014) 110 
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All-order analysis

This methodology is not really suitable to be extended to all-orders – for the all-
order proof of Glauber cancellation in double Drell-Yan, we use a different 
technique based on light-cone perturbation theory.    

This is rather technical, so I won't go over this today. The principle is the same as 
the one-loop proof though – troublesome 'final state' poles obstructing deformation 
out of the Glauber region cancel after the sum over cuts, given that the observable 
is completely insensitive to all other (soft) scatterings except the two hard ones of 
interest.    

Active parton vertices

=1 after sum over cuts
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x+

Single scatter Double scatter

Diehl, Ostermeier and Schäfer (JHEP 1203 (2012))

Basic reason why Glauber modes cancels for double Drell-Yan, just as it does 
for single Drell-Yan – spacetime structure of pinch surfaces for single and 
double scattering are rather similar:

Glauber in DPS – space-time structure
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Conclusions
●   A proof of cancellation of Glauber gluons is an important step 
towards the factorisation proof for an observable.

●   I discussed the cancellation of Glauber gluons for double Drell-Yan 
at the one-loop level in this talk. In the paper there is also an all-order 
proof using light-cone perturbation theory.

●   Much more detail on this Glauber cancellation argument, and its 
interplay with the rest of the factorisation proof, may be found in the 
paper.

J. Gaunt, Glaubers in DPS
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Glauber in SPS – all-order analysis

1) Partition leading order region into one 
collinear factor A and the remainder R

Collinear parton Soft/Glauber attachments

In A can approximate
Partioning of soft vertex 
attachments in A between 
amplitude and conjugate

All compatible cuts of A

All compatible cuts of R

Steps of the proof (schematic):

even if this momentum is 
in the Glauber region
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2) Let us assume R is independent of the partitioning V (will come back to this)

Then sum over V then acts only on A:

Glauber in SPS – all-order analysis
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3) Consider this factor in lightcone ordered perturbation theory (LCPT) – this 
is like old-fashioned time ordered perturbation theory except ordered along 
the direction of the P-jet.

Feynman graph

Time orderings

Total minus momentum 
entering state from left

On-shell minus 
momenta of lines 
in state

Denominator associated with state ξ:

Glauber in SPS – all-order analysis
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P

Active parton vertices

 (LCPT version of Cutkosky rules)

Glauber in SPS – all-order analysis



J. Gaunt, Glaubers in DPS 25

Now let's study double Drell-Yan using the same method. Assume again that R is 
independent of V, and study A.

Glauber in DPS – all-order analysis

Change variables from 'default' DPS ones
Total coll mtm from M or M*

Mtm diff in M 

Mtm diff in M*

In A we have integrals over k-, k'-, K- 

LCPT 
graphs for 
A in DPS:

+

k- integration used here
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Repeat for k' in conjugate – end up with the following picture:

Glauber in DPS – all-order analysis

k'- integration used 
here

K- integration used here

Just one external vertex in amplitude and conjugate – diagram looks essentially 
identical to SPS A and cancellation of Glaubers proceeds as for SPS.

More direct demonstration of this is in the paper
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Then can tie ends of all soft lines + one/two partons entering hard scatterings 
together in amplitude/conjugate

Then no 
attachments into 
final state allowed 
(give zero)...

...and considering two 
partitionings, we can 
always find graphs with 
matching initial state 
factors

Glauber in DPS – all-order analysis
How can we show independence of R on V?

Separate R into hard factor H and remainder

Note integral over all
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