

Measurement of the elastic, inelastic and total pp cross section at 7 TeV and 13 TeV with the ATLAS detector

Patrick PUZO Laboratoire de l'Accélérateur Linéaire and Université Paris Sud (Orsay) France

on behalf of the ATLAS Collaboration

Outline

Measurement using elastic scattering

- * Elastic scattering and σ_{tot} in LHC
- * Experimental setup: ALFA sub-detector
- * Data analysis
- * σ_{tot} , σ_{el} , and σ_{in} measurements (at $\sqrt{s} = 7$ TeV)

Measurement using scintillators at low pile-up

- * Experimental setup: MTBS sub-detector
- * Data analysis
- * Measurement of σ_{in} at $\sqrt{s} = 13$ TeV

Conclusion

Total cross section measurement using elastic scattering at $\sqrt{s} = 7$ TeV

Elastic scattering and σ_{tot}

Relevant parameter is:

$$t = -2 p^2 \left(1 - \cos(\theta)\right) \approx -p^2 \theta^2$$

 σ_{tot} = can't be calculated in perturbative QCD, but can be measured using the Optical Theorem :

$$\sigma_{tot}^{2} = \frac{16 \pi \left(\hbar c\right)^{2}}{1 + \rho^{2}} \frac{d\sigma_{el}}{dt} \bigg|_{t \to 0}$$

- φ is the ratio of the real to the imaginary elastic scattering amplitude at t = 0
- Common technique for pp colliders (already used by UA4 in other *t*-range)

θ

(1986), 142

 $d\sigma/dt vs t$

LHC case

 Theoretical prediction uses Coulomb, Nuclear and Coulomb-Nuclear interference terms:

$$\frac{d\sigma_{el}}{dt} = \frac{4 \pi \alpha^2 (\hbar c)^2 G^4(t)}{|t|^2} + \frac{\sigma_{tot}^2 (1 + \rho^2) \exp(-B t)}{16 \pi (\hbar c)^2}$$
$$- \frac{\sigma_{tot} \alpha \left(\sin(\alpha \phi(t)) + \rho \cos(\alpha \phi(t))\right) G^2(t) \exp(-B t/2)}{|t|}$$

with values of G (electric form factor of the proton), $\rho = \text{Re}(F_{el})/\text{Im}(F_{el})$ and Φ (Coulomb phase) coming from measurements at lower

energies

Coulomb scattering a fit will give absolute luminosity

Coulomb nuclear interference region a fit will give σ_{tot} , ρ and *B*

Experimental setup: ALFA (Absolute Luminosity for Atlas)

- During dedicated runs ("high β runs"), use 8 trackers ("roman pots") at ~ 240 m from ATLAS IP
 * Scintillating fiber tracker, with U-V geometry, read by
 - Each main detector is made of 20 layers of 64 scintillating fibers (500x500 μm²), shifted by 50 μm:
 - * Resolution \approx 35 µm

MAPMT

- * \approx 4.3 photo electrons per hit
- Position of the maximum gives the track position
- Each detector has 2 satellite detectors (Overlap Detectors) to measure distance between detectors

Roman Pots schematics

Hit pattern of a proton in the detector

From hits to t-reconstruction

At

Nucl. Phys. B (2014) 486-548

Experimental hit pattern in one detector, before any cut. Hit pattern is spread in the vertical plane. Due to "high β " optics, the optics lengths are different (270 m in y vs and 13 m in x) Scattering angle θ is deduced from the impact position on the detectors using the beam transport matrix:

the
$$\begin{pmatrix} u \\ \theta_u \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} u^* \\ \theta_u^* \end{pmatrix}$$

detector with u = x or y

At the IP

By subtraction:

$$\theta_u^* = \frac{u_A - u_C}{M_{12\,A} + M_{12\,C}}$$

insensitive to vertex position

Elastic event selection

* Selection based upon:

First level elastic trigger (Arm1 or Arm2)

ATLAS

√*s*=7 TeV, 80 µb⁻¹

* Back-to-back topology and background selection cut

5000

4000

3000

2000

1000

* Data quality cuts + geometrical acceptance cuts

15 20

v(237 m) A-side [mm]

25

A-C correlation of y after data quality cuts but before acceptance and background cuts. Elastic events are required to lie between the red lines

5

10

IP

Arm1

Correlation between x and θ_{s} on the A-side after data quality cuts but before acceptance and background cuts. Elastic events are required to lie inside the red ellipse

MPI@LHC 2015

y(237 m) C-Side [mm]

20

15

10

5

-10

-15

-20

-15 -10

Background and efficiencies

- Main way of looking for background events in the elastic peak:
 - * Anti-golden rate is a background estimate (nominal method)
 - t-spectrum for background is estimated by flipping the coordinates of one of the tracks
 - Background 0.50 ± 0.25 % and comes from halo protons: other sources (including diffractive events) are negligible

*

Efficiency: $89.8 \pm 0.6 \%$ (Arm1) and $88.0 \pm 0.9 \%$ (Arm2)

t-spectrum before corrections and background spectrum determined using anti-golden events

Acceptance

- * Beam pipe geometry of crucial importance: vertical cuts
- Acceptance determined from simulation (Pythia8 + MadX) and used to correct the raw spectrum

Optics and luminosity

- Elastic events are used to rescale the transport matrix elements
 - * For instance, we can use the lever arm ratio:

$$y = \theta_y^* M_{12} \implies \frac{y_{inner}}{y_{outer}} = \frac{M_{12}^{Inner}}{M_{12}^{Outer}}$$

- * 14 optics parameters are used for a global fit. Main effect is that strengths of the triplet were miscalibrated by 0.3%, with a difference of 10% between both beams
 - * No concern for high lumi, but for ALFA

Luminosity estimated by ATLAS:

 $L = 78.7 \pm 1.9 \ \mu b^{-1}$

MPI@LHC 2015

P. Puzo

Fit of σ_{tot} and B

In a given bin t_i, one has:

$$\frac{d\sigma}{dt_i} = \frac{1}{\Delta t_i} \frac{M^{-1} [N_i - B_i]}{A_i \times \varepsilon^{reco} \times \varepsilon^{trig} \times \varepsilon^{DAQ} \times L_{int}}$$

* A_i (acceptance), M (unfolding), N_j : (selected events, B_i (estimated background), ϵ^{reco} (reconstruction efficiency), ϵ^{trig} (trigger efficiency, ϵ^{DAQ} (DAQ efficiency), L_{int} (luminosity)

* Fit range [0.01 – 0.1] GeV² gives $(\chi^2/N_{dof} = 7.4/16)$:

 $\sigma_{tot} = 95.35 \pm 0.38_{stat} \pm 1.25_{syst(without extrap)} \pm 0.37_{extrap}$ mb $B = 19.73 \pm 0.14_{stat} \pm 0.26_{syst}$ GeV⁻²

Main systematic uncertainties: luminosity and beam energy * All other uncertainties are < than 50% of the luminosity error

Elastic and inelastic cross sections

* Elastic cross section from the integrated fit function:

$$\sigma_{el} = \frac{\sigma_{tot}}{B} \frac{1 + \rho^2}{16 \pi (\hbar c)^2} \implies \sigma_{el} = 24.00 \pm 0.19_{stat} \pm 0.57_{syst} \text{ mb}$$

Inelastic cross section:

$$\sigma_{in} = \sigma_{tot} - \sigma_{el} \implies \sigma_{in} = 71.34 \pm 0.36_{stat} \pm 0.83_{syst} \text{ mb}$$

Optical point:

$$\left. \frac{d\sigma}{dt} \right|_{t \to 0} = 474 \pm 13 \text{ mb.GeV}^{-2}$$

Comparison with TOTEM (1/2)

ATLAS: Nucl. Phys. B (2014) 486-548

TOTEM: EPL 101 (2013) 21004 with ATLAS data superimposed

Comparison with TOTEM (2/2)

- Large part of the difference is coming from the luminosity
 - * Uncertainty (2.3% for ATLAS and 4.5% for TOTEM)
 - * It scales with a factor 0.5 in σ_{tot}

Elastic cross section σ_{el}

ALICE: EPJC 73 (2013) 2456

Inelastic cross section measurement using scintillators at low pile-up at $\sqrt{s} = 13$ TeV

Experimental Setup

- * June 2015 : 13 TeV but mean number of pp interactions per bunch crossing was $\mu = 2.3 \times 10^{-3}$ (integrated lumi 63±6 μ b⁻¹)
- Measurement done with two sets of scintillators (MBTS) at ±3.6 m from IP covering 2.07 < |η| < 3.86
- Inelastic interaction : one of the two protons dissociate
- Fiducial measurement limited by the phase space where the larger of the invariant masses
 M_x is within the detector acceptance

MBTS counters

M_x and M_y in a double-dissociation event

ATLAS-CONF-2015-038

Number of scintillating counters above 0.15 pC after background subtraction for inclusive events (left) and single sided events (right)

- Trigger efficiency measured with the data is applied to the simulated samples
- Donnachie and Landshoff model of diffraction (with α '=0.25 and ϵ =0.085) is in good agreement in the low n_{MTBS} region and is used for MC based corrections

Fiducial measurement

	Value	Rel. unc.
Number of events (N)	4159074	
Number of bkgnd events (N _{BG})	43512	± 100%
Luminosity (μ b ⁻¹)	62.9	± 9%
Trig efficiency ($arepsilon$ _{trig})	99.7%	±0.1%
MC corr. factor	0.993	± 0.5%

Value used for the calculation of the fiducial cross section

* Inelastic cross section:

$$\sigma_{in} = \frac{N - N_{BG}}{\varepsilon_{trig} \times L} \times \frac{1 - f_{\xi < 10^{-6}}}{\varepsilon_{sel}}$$

Measurement:

$$\sigma_{in} = 65.2 \pm 0.8_{\text{exp}} \pm 5.9_{lumi} \text{ mb}$$

k exp includes all except luminosity

Measured fiducial cross section compared with MC predictions

This measurement	65.2±0.8 (exp)±5.9(lum) mb
Pythia8 DL, $\varepsilon = 0.060$	71.0 mb
Pythia8 DL, $\varepsilon = 0.085$	69.1 mb
Pythia8 DL, $\varepsilon = 0.100$	68.1 mb
Pythia8 A2	74.4 mb
EPOS LHC	71.2 mb
QGSJET-II	72.7 mb

P. Puzo

Inelastic cross section

- Extrapolation to full inelastic cross section using models of inelastic interactions
 - Depending on models, acceptance ranges from 87.6% to 93.7%. Final value is:

$$\sigma_{in} = 73.1 \pm 0.9_{exp} \pm 6.6_{lumi} \pm 3.8_{extr} \text{ mb}$$

- About one standard deviation below theoretical predictions
- Improvement of the luminosity measurement will be made using Van der Meer scans

Measured o_{in} compared with various predictions

Conclusion

* Using elastic scattering, ATLAS has performed a measurement of σ_{tot} , σ_{el} , and σ_{in} at $\sqrt{s} = 7$ TeV

 $\sigma_{tot} = 95.4 \pm 1.4 \text{ mb}$ $\sigma_{el} = 24.00 \pm 0.60 \text{ mb}$ $\sigma_{in} = 71.34 \pm 0.90 \text{ mb}$

- * The analysis of data at $\sqrt{s} = 8$ TeV is ongoing
- * Data at $\sqrt{s} = 13$ TeV (same optics) where collected last month
- * Another run with $\beta^* \approx 2-3$ km at $\sqrt{s} = 13$ TeV is planned to measure σ_{tot} , σ_{el} , and σ_{in} in a luminosity independent method

* ATLAS performed a measurement of σ_{in} at $\sqrt{s} = 13$ TeV using a set of scintillator counters

$$\sigma_{in} = 73.1 \pm 0.9_{exp} \pm 6.6_{lumi} \pm 3.8_{extr} \text{ mb}$$

* Measured value is one standard deviation below theoretical estimations