

7th International Workshop on Multiple Partonic Interactions at the LHC (Trieste, Italy, November 22-27, 2015)

CMS Experiment at LHC, CERN Data recorded: Thu Sep 13 05:21:23 2012 (Run/Event: 202792 / 1737666483 Lumi section: 918 Orbit/Crossing: 240400935 / 1986

Jet effects in high multiplicity pp events Antonio Ortiz

Work in collaboration with: Gyula Bencedi, Héctor Bello and Satyajit Jena

Instituto de Ciencias Nucleares UNAM

November 25, 2015

- Tools
- Particle production as a function of the event multiplicity and hardness
- Energy dependence
- Summary

INTRODUCTION

November 26, 2015

Small systems (like those produced in pp and p-Pb collisions) have attracted the attention of the heavy ion community because:

- In high multiplicity events, sQGP-like signatures have been found (flow & long range azimuthal correlations)
- The origin of such effects is still unknownMore differential studies are needed

November 26, 2015

$$\rho = \tanh^{-1} \beta_{\mathrm{T}} = \tanh^{-1} \left(\left(\frac{r}{R} \right)^n \beta_{\mathrm{S}} \right)$$

Describes the $p_{\rm T}$ spectra of identified hadrons in:

- p-Pb and Pb-Pb data
- Also the p_T distributions generated with Pythia (where no hydrodynamical evolution is assumed)

ALICE, PLB 728 (2014) 25-38 0.18 0.16 0.14 0.12 0.1 ALICE, p-Pb, √s_{NN} = 5.02 TeV 0.08 V0A Multiplicity Classes (Pb-side) --- ALICE, Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 0.06 F PYTHIA8, $\sqrt{s} = 7$ TeV (with Color Reconnection) 0.04 PYTHIA8, $\sqrt{s} = 7$ TeV (without Color Reconnection) 0.02 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 $\langle \beta_{-} \rangle$

It has been discussed that color reconnection (CR) produces radial flow-like patters due to boosted strings G. Paić, E. Cuautle, P. Christiansen, I. Maldonado and A. O., PRL 111 (2013) 042001

* Figure taken from: G. Gustafson, Acta Phys. Polon. B40, 1981 (2009)

November 26, 2015

* Figure taken from: G. Gustafson, Acta Phys. Polon. B40, 1981 (2009)

November 26, 2015

* Figure taken from: G. Gustafson, Acta Phys. Polon. B40, 1981 (2009)

November 26, 2015

* Figure taken from: G. Gustafson, Acta Phys. Polon. B40, 1981 (2009)

This was the focus of this work:
PRL 111 (2013) 042001
□ The more N_{MPI} the higher the flow-like effect

November 26, 2015

Due to the large N_{MPI} a high p_{T} jet in the event is expected (high probability):

- Can we quantify the effects of the high p_{T} jets?
- I would expect a higher boost with increasing the parton p_T

November 26, 2015

(Mo2013), an MPI system with a scale p_{T} of the hard interaction (normally $2 \rightarrow 2$) can be merged with one of a harder scale with a probability that is:

 $P(p_{\rm T}) = \frac{\left(RR \times p_{\rm T0}\right)^2}{\left(RR \times p_{\rm T0}\right)^2 + p_{\rm T}^2} \qquad \begin{array}{l} \text{Reconnection Range } (RR): \ 0-10 \\ \text{Tune Monash 2013:} \quad RR \times p_{\rm T0} \approx 3 \end{array}$

http://home.thep.lu.se/~torbjorn/pythia82html/Welcome.html

November 26, 2015

* Figure taken from: G. Gustafson, Acta Phys. Polon. B40, 1981 (2009)

November 26, 2015

Tools

Generator: Pythia 8.212, T. Sjöstrand et. al, CPC191 (2005) 159
 Tune Monash 2013, P. Skands, EPJC74 (2014) 8, 3024
 900M events
 7 TeV (reference), 0.9 TeV, 2.76 TeV and 13 TeV

Jet Finder: FastJet 3.1.3, M. Cacciari et al., EPJC72(2012)1896

- \Box Anti- k_{T} algorithm
- **R=0.4**

 $\Box p_{\mathrm{T}}^{\mathrm{min}} = 5 \mathrm{GeV}$

Visible particles (Pythia definition) are considered for the jet reconstruction

INCLUSIVE PARTICLE PRODUCTION AS A FUNCTION OF THE EVENT MULTIPLICITY AND HARDNESS

November 26, 2015

* The underlying event contribution to the jet $p_{\rm T}$ was not studied, because we are only interested in the event classification

INCLUSIVE PARTICLE PRODUCTION AS A FUNCTION OF THE EVENT MULTIPLICITY AND HARDNESS

November 26, 2015

The higher the event multiplicity the higher the average p_{T}^{jet}

Instituto de

Ciencias Nucleares UNAM

□ The position of the peak is shifted to higher p_T when p_T^{jet} increases. The shift is accompanied by an increase of $<\beta_T>$

The position of the peak is shifted to higher p_T when p_T^{jet} increases. The shift is accompanied by an increase of <β_T> (from Blast-Wave analysis)
 The effect is very small for p_T^{jet} > 15 GeV

This is a FF effect (p/π vs. p_T/p_T^{jet} is $\approx p_T^{jet}$ independent)

November 26, 2015

$p/\pi vs. p_T$ (high multiplicity)

Instituto de

Ciencias Nucleares UNAM

p/π vs. p_T (high multiplicity)

Without CR: p/π vs. p_T/p_T^{jet} is $\approx p_T^{jet}$ independent (FF)

November 26, 2015

Study of the inclusive light flavored hadron production

Results from the Blast-Wave analysis are presented, for this a simultaneous fit of the BW function to the the p_T spectra is performed in order to extract $<\beta_T>$. The fitting ranges are the following:

(Same p_T ranges as in: G. Paić, E. Cuautle and A. O. NPA 941 (2015) 78-86, where the p_T spectra in high multiplicity events were described by BW model within 10%)

November 26, 2015

Without Jets

$<\beta_{\rm T}>\approx 0.34, < T_{\rm kin}>\approx 0.14, < n> \approx 2.94$

November 26, 2015

Without Jets

+ π (100.00x) + Κ (50.00x) (25.00x)

· p̄ (1.00x) 0.50x) ⊼ (0.10x)

-Ξ⁺(0.05x) +Ω⁺ (0.01x) ast-Wave (qlobal

5 GeV. ml<1)

 $< N_{ch} >_{lnl<1} \approx 59.58$

p₁ (GeV/*c*)

 $15 < p_T^{Jet} < 20 \text{ GeV}$

$<\beta_{\rm T}>\approx 0.48, < T_{\rm kin}>\approx 0.12, <n> \approx 1.94$

When a high *p*_T jet is required:
BW model describes the spectra even in low multiplicity events. In the inclusive case (w/o selection on hardness), low multiplicity events are very soft -> BW can not fit the spectra
<β_T> is ≈independent of multiplicity when *p*_T^{jet} and multiplicity are fixed

Slight increase of $<\beta_T>$

ENERGY DEPENDENCE

November 26, 2015

Instituto de $15 < p_T^{Jet} < 20 \text{ GeV}$ Ciencias **Nucleares** UNAM Similar $\langle N_{ch} \rangle$ and $\langle N_{MPl} \rangle$ gives similar parameters: $\langle \beta_T \rangle \approx 0.47$, $\langle T_{kin} \rangle \approx 0.12$, $\langle n \rangle \approx 2.18$ pp @ 0.9 TeV pp @ 7 TeV pp @ 13 TeV $\pi^+ + \pi^-$ (100.00x) π⁻ + π (100.00x) $\pi^{T} + \pi$ (100.00x) Trum Trum $K^{+} + K^{-}(50.00x)$ $K^{+} + K^{-}(50.00x)$ $K^{+} + K^{-}(50.00x)$ K_{S}^{0} (25.00x) K_{S}^{0} (25.00x) K_{S}^{0} (25.00x) $p + \bar{p} (1.00x)$ $p + \bar{p} (1.00x)$ $p + \bar{p} (1.00x)$ \$ (0.50x) \$ (0.50x) \$ (0.50x) $\Lambda + \overline{\Lambda}$ (0.10x) $\Lambda + \overline{\Lambda} (0.10x)$ $\Lambda + \overline{\Lambda}$ (0.10x) $\Xi + \Xi (0.05x)$ $\Xi + \Xi (0.05x)$ Ξ[¯]+Ξ (0.05x) $\Omega^{-} + \overline{\Omega}^{+} (0.01 \text{ x})$ $\Omega^{-} + \overline{\Omega}^{+} (0.01 \mathrm{x})$ $\Omega^{-}+\overline{\Omega}^{+}$ (0.01x) Blast-Wave (global) Blast-Wave (global) Blast-Wave (global) $2\pi p_{-}$ **∂**10 ≥10 2 2 0 10⁻⁵ ⊧ $\frac{dN_{ch}/d\eta}{\langle dN_{ch}/d\eta \rangle} < 2, 15 < p_{T}^{jet} < 20 \text{ GeV}$ $dN_{ch}/d\eta < 3, 15 < p_T^{jet} < 20 \text{ GeV}$ dN_{ch}/dղ 10-6 < 2, 15 < p_T^{jet} < 20 GeV {dN /dŋ } 10-7 10^{-ε} MC / Fit 1.4 Pythia 8.212 (Mo2013) Pythia 8.212 (Mo2013) Pythia 8.212 (Mo2013) 1.2 0.8 $\langle \beta_{\tau} \rangle = 0.46, \ \overline{T}_{kin} = 0.13 \ \text{GeV}, \ n=2.25$ $\langle \beta_{T} \rangle = 0.47, T_{kin} = 0.12 \text{ GeV}, n=2.13$ $\langle \beta_{\rm T} \rangle = 0.47, T_{\rm kin} = 0.12 \, {\rm GeV}, n=2.17$ 0.6 ō p₁ (GeV/*c*) p₁ (GeV/*c*) 0.5 1.5 2.5 0.5 2.5 0.5 $p_{_{_{_{_{}}}}}^{3.5}$ (GeV/c)⁴ $< N_{ch} >_{ini<1} \approx 15.65$ $\langle N_{ch} \rangle_{|\eta| < 1} \approx 17.72$ $< N_{ch} >_{l\eta l < 1} \approx 18.35$

<*N*_{MPI}>≈ 4.14

November 26, 2015

<*N*_{MPI}>≈ 3.53

A. Ortiz (MPI, Trieste, Italy)

<*N*_{MPI}>≈ 4.26

Proton-to-pion ratio show little or no dependence with \sqrt{s} (p_T position of the peak is the same for the three colliding systems)

November 26, 2015

Without the jet requirement, the ratios look more different due to the different jet biases

November 26, 2015

Summary

In Pythia, MPI (semi-hard and hard partonic scatterings) and CR produce flow-like effects

The result of the interaction between the soft and hard component could be used as a tool to validate or rule out models which produce flow(like) effects in small systems, e.g. hydro vs. color reconnection (important for HI physics)

Same physics is obtained when a selection on multiplicity and hardness is implemented

Guy Paić, Peter Christiansen, Andreas Morsch and Eleazar Cuautle are acknowledged for the useful discussions

November 26, 2015

BACKUP

November 26, 2015

HADRONIZATION IN A CLEAN PARTONIC CONFIGURATION

November 26, 2015

OTHER APPROACHES

November 26, 2015

Jet effects can be also seen in a Instituto de **Nucleares** more inclusive analysis

Ciencias

UNAM

Jet effects can be also seen in a Instituto de Ciencias Nucleares UNAM

PID in charged jets

z^{ch}

