

Two-particle correlation measurements in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Michele Floris (CERN) for the ALICE Collaboration MPI@LHC 2015

Setting the stage: Collectivity in AA

- Working hypothesis: a thermalized (and deconfined) medium is created in AA collisions
- It expands and cools down under the effect of pressure gradients

Setting the stage: Collectivity in AA

- Working hypothesis: a thermalized (and deconfined) medium is created in AA collisions
- It expands and cools down under the effect of pressure gradients
- Leads to asymmetry in momentum space
- Anisotropic flow: can be studied with 2-particle correlations

CMS, JHEP, 2010 (9) 091

all the second

CMS, JHEP, 2010 (9) 091

all the second

The ALICE detector

Particle identification

ALICE provides **extensive PID** capabilities, **several techniques** (d*E*/dx, time-of-flight, Cherenkov...)

Particle identification

ALICE provides **extensive PID** capabilities, **several techniques** (d*E*/dx, time-of-flight, Cherenkov...)

This talk: PID based on combined TPC/TOF information

Central Barrel:

tracks and PID in $|\eta| \leq 0.8$ tracklets in $|\eta| \leq 1.0$ 2012 pilot run (1.7 M MB events) 2013 run (10⁸ MB events, 50µb⁻¹)

Central Barrel:

tracks and PID in $|\eta| \leq 0.8$ tracklets in $|\eta| \leq 1.0$

VZERO: used for event activity classes

2012 pilot run (1.7 M MB events) 2013 run (10^8 MB events, $50\mu b^{-1}$)

Central Barrel:

tracks and PID in $|\eta| \lesssim 0.8$ tracklets in $|\eta| \lesssim 1.0$

VZERO: used for event activity classes

Muon arm: extend correlations at forward η

2012 pilot run (1.7 M MB events) 2013 run (10^8 MB events, $50\mu b^{-1}$)

2013 run $(MB + 5-6 \text{ nb}^{-1} \text{ triggered events})$

Central Barrel:

tracks and PID in $|\eta| \leq 0.8$ tracklets in $|\eta| \leq 1.0$ 2012 pilot run (1.7 M MB events) 2013 run (10⁸ MB events, 50µb⁻¹)

VZERO: used for event activity classes

Muon arm: extend correlations at forward η

2013 run $(MB + 5-6 \text{ nb}^{-1} \text{ triggered events})$

Two configurations

µ arm [●]≉

Pb-p: Pb-going

p-Pb: p-going

NB: in the following: $\eta = \eta_{lab}$

7

 $\frac{1}{N_{\text{trig}}} \frac{\mathrm{d}^2 N_{\text{assoc}}}{\mathrm{d}\Delta\eta \,\mathrm{d}\Delta\varphi} = \frac{S(\Delta\eta,\Delta\varphi)}{B(\Delta\eta,\Delta\varphi)}$

$\frac{1}{N_{\text{trig}}} \frac{\mathrm{d}^2 N_{\text{assoc}}}{\mathrm{d}\Delta\eta \mathrm{d}\Delta\varphi} = \frac{S(\Delta\eta, \Delta\varphi)}{B(\Delta\eta, \Delta\varphi)} \quad \frac{S(\Delta\eta, \Delta\varphi) = 1/N_{\text{trig}} \, \mathrm{d}^2 N_{\text{same}}/\mathrm{d}\Delta\eta \mathrm{d}\Delta\varphi}{B(\Delta\eta, \Delta\varphi)}$

al al alle

7

$\frac{1}{N_{\text{trig}}} \frac{\mathrm{d}^2 N_{\text{assoc}}}{\mathrm{d}\Delta\eta \mathrm{d}\Delta\varphi} = \frac{S(\Delta\eta, \Delta\varphi)}{B(\Delta\eta, \Delta\varphi)} \quad \begin{array}{l} S(\Delta\eta, \Delta\varphi) = 1/N_{\text{trig}} \ \mathrm{d}^2 N_{\text{same}}/\mathrm{d}\Delta\eta \mathrm{d}\Delta\varphi \\ B(\Delta\eta, \Delta\varphi) = \alpha \ \mathrm{d}^2 N_{\text{mixed}}/\mathrm{d}\Delta\eta \ \mathrm{d}\Delta\varphi \end{array}$

$\frac{1}{N_{\text{trig}}} \frac{\mathrm{d}^2 N_{\text{assoc}}}{\mathrm{d}\Delta\eta \,\mathrm{d}\Delta\varphi} = \frac{S(\Delta\eta, \Delta\varphi)}{B(\Delta\eta, \Delta\varphi)} \quad \begin{array}{l} S(\Delta\eta, \Delta\varphi) = 1/N_{\text{trig}} \,\,\mathrm{d}^2 N_{\text{same}}/\mathrm{d}\Delta\eta \,\mathrm{d}\Delta\varphi} \\ B(\Delta\eta, \Delta\varphi) = \alpha \,\,\mathrm{d}^2 N_{\text{mixed}}/\mathrm{d}\Delta\eta \,\mathrm{d}\Delta\varphi \end{array}$

$\frac{1}{N_{\text{trig}}} \frac{\mathrm{d}^2 N_{\text{assoc}}}{\mathrm{d}\Delta\eta \,\mathrm{d}\Delta\varphi} = \frac{S(\Delta\eta, \Delta\varphi)}{B(\Delta\eta, \Delta\varphi)} \quad \begin{array}{l} S(\Delta\eta, \Delta\varphi) = 1/N_{\text{trig}} \,\,\mathrm{d}^2 N_{\text{same}}/\mathrm{d}\Delta\eta \,\mathrm{d}\Delta\varphi} \\ B(\Delta\eta, \Delta\varphi) = \alpha \,\,\mathrm{d}^2 N_{\text{mixed}}/\mathrm{d}\Delta\eta \,\mathrm{d}\Delta\varphi \end{array}$

How to get rid of the jet contribution?

MPI@LHC 2015

Jet contribution reduced assuming:

• Mostly jet contribution (i.e. no significant ridge) in low multiplicity events

ALICE

Jet contribution reduced assuming:

• Mostly jet contribution (i.e. no significant ridge) in low multiplicity events

ALICE

Jet contribution reduced assuming:

• Mostly jet contribution (i.e. no significant ridge) in low multiplicity events

Jet contribution reduced assuming:

- Mostly jet contribution (i.e. no significant ridge) in low multiplicity events
- No significant medium effect in the energy loss / jet fragmentation

ALICE, PLB719 (2013) 29

-1

-2

-1

Analysis repeated for h, π , K, p triggers (TPC+TOF PID)

Analysis repeated for **h**, **π**, **K**, **p** triggers (TPC+TOF PID)

ALICE, PLB719 (2013) 29

Residual of jet, particularly important for π

- Most likely event selection bias on jet fragmentation
- **Excluded** on the **near** side $(|\Delta \eta| > 0.8)$
- Systematic on the away side taken into account

Analysis repeated for h, π , K, p triggers (TPC+TOF PID)

Extracting the vn coefficients

$$\frac{1}{N_{\text{trig}}} \frac{dN_{\text{assoc}}}{d\Delta\varphi} = a_0 + 2a_1 \cos \Delta\varphi + 2a_2 \cos 2\Delta\varphi + 2a_2 \cos 2\Delta\varphi$$

ALICE, PLB 719, 29-41 (2013)

$$\frac{1}{N_{\text{trig}}} \frac{dN_{\text{assoc}}}{d\Delta\varphi} = a_0 + 2 a_1 \cos \Delta\varphi + 2 a_2 \cos 2\Delta\varphi + 2 a_3 \cos 3\Delta\varphi.$$

2PC modulation: $V_{n\Delta}$ {2PC, sub} = $a_n/(a_0+b)$

ALICE, PLB 719, 29-41 (2013)

$$\frac{1}{N_{\text{trig}}} \frac{dN_{\text{assoc}}}{d\Delta\varphi} = a_0 + 2a_1 \cos \Delta\varphi + 2a_2 \cos 2\Delta\varphi + 2a_3 \cos 3\Delta\varphi.$$

2PC modulation: $V_{n\Delta}$ {2PC, sub} = $a_n/(a_0 + b)$

Subtraction removes part of baseline: to be restored!

Single particle modulation can be extracted as:

Single particle modulation can be extracted as:

 $v_n^h \{2PC\} = \sqrt{V_{n\Delta}^{h-h}}$ (symmetric trigger and associate particles) $v_n^i \{2PC\} = V_{n\Delta}^{h-i} / \sqrt{V_{n\Delta}^{h-h}}$ (different particle species)

ALICE, PLB 719, 29-41 (2013)

 $V_{2,\pi}$ similar to $V_{2,h}$

 $V_{2,\pi}$ similar to $V_{2,h}$

Hint of $V_{2,K}$ smaller than $V_{2,\pi}$ at low p_T

ALICE

 $V_{2,\pi}$ similar to $V_{2,h}$

Hint of $v_{2,K}$ smaller than $v_{2,\pi}$ at low p_T $v_{2,p}$ smaller than $v_{2,\pi}$ below 2 GeV/c and larger above crossing at about 2 GeV/c ALICE. PLE

M. Floris

ALICE, PLB 726 164-177 (2013)

11

v_2 of π , K, p in high-multiplicity p-Pb

v_2 of π , K, p in high-multiplicity p-Pb

v_2 of π , K, p in high-multiplicity p-Pb

Forward-Central Correlations

- Hadrons at mid rapidity ($|\eta| < 1.0$) and forward inclusive muons (-4 < η < -2.5)
- Tracklets
 - Straight line using first two layers of ITS
 - $< p_T > \sim 0.75 \text{ GeV/}c$
 - Cross-checked with reconstructed tracks (lower statistics)

Forward-Central Correlations

- Hadrons at mid rapidity ($|\eta| < 1.0$) and forward inclusive muons (-4 < η < -2.5)
- Tracklets
 - Straight line using first two layers of ITS
 - $< p_T > \sim 0.75 \text{ GeV}/c$
 - Cross-checked with reconstructed tracks (lower statistics)
- Inclusive **muons**
 - **Composition** varies as a function of p_{T}
 - Higher *p*_T: dominated by **heavy flavor**

Forward-Central Correlations

- Hadrons at mid rapidity ($|\eta| < 1.0$) and forward inclusive muons (-4 < η < -2.5)
- Tracklets
 - Straight line using first two layers of ITS
 - $< p_T > \sim 0.75 \text{ GeV/}c$
 - Cross-checked with reconstructed tracks (lower statistics)
- Inclusive muons
 - **Composition** varies as a function of p_{T}
 - Higher p_T: dominated by heavy flavor
- Sample split into multiplicity classes (V0, 2.8 < η < 3.9 and -3.7 < η < -2.7)
 - Symmetric for both beam configurations
 - 0-20% = high mult; 60-100% low mult

Associated yield per trigger particle

Associated yield per trigger particle

Associated yield per trigger particle

15

Validation of the tracklet analysis

$v_n^{\mu}\{2\text{PC}, \text{sub}\} = V_{n\Delta}\{2\text{PC}, \text{sub}\}/\sqrt{V_{n\Delta}^c}\{2\text{PC}, \text{sub}\}$

alt in the

ALICE

Validation of the tracklet analysis

$v_n^{\mu}\{2\text{PC}, \text{sub}\} = V_{n\Delta}\{2\text{PC}, \text{sub}\}/\sqrt{V_{n\Delta}^c}\{2\text{PC}, \text{sub}\}$

v_n of muons measured in the muon arm

advert ...

Validation of the tracklet analysis

 $v_n^{\mu}\{2\text{PC}, \text{sub}\} = V_{n\Delta}\{2\text{PC}, \text{sub}\}/\sqrt{V_{n\Delta}^c}\{2\text{PC}, \text{sub}\}$

v_n of muons measured in the muon arm Measured in the central barrel - (track-track or tracklet-tracklet)

Validation of the tracklet analysis

$$v_n^{\mu}\{2\text{PC}, \text{sub}\} = V_{n\Delta}\{2\text{PC}, \text{sub}\}/\sqrt{V_{n\Delta}^c\{2\text{PC}, \text{sub}\}}$$

v_n of muons measured in the muon arm Measured in the central barrel - (track-track or tracklet-tracklet)

Good agreement between the two analyses, tracklet analysis works!

Forward-µ – hadron correlations

Similar p_T dependence in p-going and Pb-going directions

~(16±6)% higher in the Pb-going direction

arXiv:1506.08032 [nucl-ex]

Forward-µ – hadron correlations

arXiv:1506.08032 [nucl-ex]

17

Forward-µ – hadron correlations

arXiv:1506.08032 [nucl-ex]

M. Floris

17

I state.

Saturation effects

Large-x gluons in the Pb Low-x gluons in the Pb CGC effects suppressed CGC effects enhanced (naive expectation, no actual prediction yet)

M. Floris

Forward rapidity measurements favor density effects

Forward rapidity measurements favor density effects

Other ideas on the market for small systems ridges:

- Color connections in the longitudinal direction [B. Arbuzov, E. Boos, and V. Savrin, Eur.Phys.J. C71 (2011) 1730]
- Multiparton interactions

[S. Alderweireldt and P.Van Mechelen, arXiv:1203.2048]

Forward rapidity measurements favor density effects

Other ideas on the market for small systems ridges:

- Color connections in the longitudinal direction [B. Arbuzov, E. Boos, and V. Savrin, Eur.Phys.J. C71 (2011) 1730]
- Multiparton interactions

[S. Alderweireldt and P.Van Mechelen, arXiv:1203.2048]

Open question!

- A "double ridge" is seen in high multiplicity
 p-Pb at √s_{NN} = 5.02 TeV collisions, once jet correlations are subtracted
- ALICE fully characterized the "double ridge" in p-Pb collisions
 - Identified particles show a clear mass ordering, similar to Pb-Pb collisions
 - Ridge extends to forward rapidities ($|\eta| \sim 5$)
 - *v*₂ **stronger in the Pb-going** directions at forward rapidities
 - Hint of heavy flavor "flow"?
- Current observations consistent with hydrodynamic interpretation
 - Many alternatives in the market
- What is the underlying physics driving ridges in pp, pA, AA?

Summary

- A "double ridge" is seen in high multiplicity p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV collisions, once jet correlations are subtracted
- ALICE fully characterized the "double ridge" in p-Pb collisions
 - Identified particles show a clear mass ordering, similar to Pb-Pb collisions
 - Ridge extends to **forward rapidities** ($|\eta| \sim 5$)
 - *v*₂ **stronger in the Pb-going** directions at forward rapidities
 - Hint of heavy flavor "flow"?
- Current observations consistent with hydrodynamic interpretation
 - Many alternatives in the market
- What is the underlying physics driving ridges in pp, pA, AA?

Summary

- A "double ridge" is seen in high multiplicity p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV collisions, once jet correlations are subtracted
- ALICE fully characterized the "double ridge" in p-Pb collisions
 - Identified particles show a clear mass ordering, similar to Pb-Pb collisions
 - Ridge extends to **forward rapidities** ($|\eta| \sim 5$)
 - *v*₂ **stronger in the Pb-going** directions at forward rapidities
 - Hint of heavy flavor "flow"?
- Current observations consistent with hydrodynamic interpretation
 - Many alternatives in the market
- What is the underlying physics driving ridges in pp, pA, AA?

Summary

Paper submitted to PLB arXiv:1506.08032 [nucl-ex]

Paper submitted to PLB arXiv:1506.08032 [nucl-ex]

21

Constant fit: 1.16±0.06 with χ^2 /NDF =0.5

Double ridge extends up to very large $\Delta \eta$ Asymmetry between the two sides observed (no CGC prediction yet) Forward-central correlations sensitive to HF muon v₂

Paper submitted to PLB arXiv:1506.08032 [nucl-ex]

 in order to account for the effects of the absorber, future model calculations should use the efficiencies provided

• Published model predictions cannot yet be directly compared to data

For further understanding of the production mechanism of the ridges, η -dependence of the long-range correlation structures needs to be investigated.

For further understanding of the production mechanism of the ridges, η -dependence of the long-range correlation structures needs to be investigated.

Double Ridge in pPb

- Nearside peak yields are mostly independent of multiplicity
- For the same trigger/associated $p_{\rm T}$ we select the same jet population regardless of multiplicity
- Justification for subtracting low-multiplicity correlations from high-multiplicity correlations to isolate ridge structure
- Remaining yield on the awayside after subtraction of jet structures → a symmetric "double" ridge

ALICE PLB 741 (2015)

Fig. 5: Associated yield per trigger particle as a function of $\Delta \varphi$ averaged over $|\Delta \eta| < 1.8$ for pairs of charged particles with $2 < p_{T,trig} < 4 \text{ GeV}/c$ and $1 < p_{T,assoc} < 2 \text{ GeV}/c$ in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV for different event classes, compared to pp collisions at $\sqrt{s} = 2.76$ and 7 TeV. For the event classes 0–20%, 20–40% and 40–60% the long-range contribution on the near-side $1.2 < |\Delta \eta| < 1.8$ and $|\Delta \varphi| < \pi/2$ has been subtracted from both the near side and the away side as described in the text. Subsequently, the yield between the peaks (determined at $\Delta \varphi \approx 1.3$) has been subtracted in each case. Only statistical uncertainties are shown; systematic uncertainties are less than 0.01 (absolute) per bin.