Long-range azimuthal correlations in 2.76 & 13 TeV pp with ATLAS

Andy Buckley

University of Glasgow

MPI@LHC 2015, Trieste, 2015-11-26

Introduction to the ridge

The "near-side ridge" phenomenon has been one of the most prominent and enduring physics puzzles at the LHC.

Expected/hoped-for effect in *pA* and *AA* collisions, from collective flow theory paradigm.

Discovery in high-multiplicity *pp* was a surprise!

Ridge in p + Pb due to global sinusoidal modulation of particle production...same in pp?

Today show ATLAS' latest ridge measurements, cf. arXiv:1509.04776

Phys. Rev. Lett. 110, 182302 (2013), arXiv:1212.5198

Datasets

pp data taken with ATLAS: 4 pb^{-1} at 2.76 TeV and 14 nb^{-1} at 13 TeV.

Pile-up low in both cases: $\langle \mu \rangle \sim 0.5$ at 2.76 TeV and ~ 0.04 at 13 TeV.

Charged tracks with $p_T > 300$ MeV and $|\eta| < 2.5$ used as input to correlation measures. Only tracks with $p_T > 400$ MeV counted in N_{ch}^{rec} .

Correlation observables 1: *S*, *B*, and *C* in $\Delta \eta$, $\Delta \phi$

Raw observable is 2p correlation $C(\Delta \eta, \Delta \phi) = S(\Delta \eta, \Delta \phi)/B(\Delta \eta, \Delta \phi)$.

S and *B* are distributions of particle *a*, *b* separations for *a* & *b* in same event and mixed events respectively.

Division cancels acceptance effects and systematics. Not explicitly unfolded, but tracking efficiencies used as weights $1/\epsilon(p_T^a, \eta^a) \epsilon(p_T^b, \eta^b)$.

Dominant structure is the dijet system with "this" jet around (0,0) and the "other" jet's far ridge in $\Delta \eta$ at $\Delta \phi \sim \pi$. Near-side ridge at $\Delta \phi \sim 0$. 4/9

Correlation observables 2: per-particle yields

To focus on long-range ridge effects, integrate over large $|\Delta \eta|$ to define *S*, *B*, and *C* functions in $\Delta \phi$ only, e.g.

$$S(\Delta\phi) = \int_2^5 \mathbf{d} |\Delta\eta| \, S(\Delta\eta,\Delta\phi)$$

Useful to convert to a per-particle correlation yield:

$$Y(\Delta\phi) = C(\Delta\phi) \cdot \frac{\int B(\Delta\phi) d\Delta\phi}{\pi N_a}$$
$$= \frac{S(\Delta\phi)}{\hat{B}(\Delta\phi)} / \pi N_a$$

Y measures the average number of long-range correlation partners per "trigger" particle *a* at a given $\Delta \phi$. Results:

Increasing modulation with N_{ch} fills in the near-side minimum \Rightarrow produces the ridge, and narrows + heightens the far-side peak.

Interpretation: yield fits

In p + Pb collisions, the ridge results from sinusoidal global modulation of single-particle azimuthal angle distributions.

This new study uses template fitting of Y to investigate whether the pp ridge has the same origin:

 $Y^{\text{templ}}(\Delta\phi) = FY^{\text{periph}}(\Delta\phi) + Y^{\text{ridge}}(\Delta\phi)$ where

 $\Upsilon^{\text{ridge}}(\Delta\phi) = G[1 + 2v_{2,2}\cos(2\Delta\phi)].$

G is fixed by template normalisation = data; *Y*^{periph} taken from lowest-multiplicity data bin;

F and $v_{2,2}$ free parameters for χ^2 fit.

Results:

Y^{periph} and Y^{ridge} as open points and blue line respectively; Y^{templ} in red fits several data features with 2 params on one sinusoid.

Interpretation: testing single particle modulation

If the ridge is formed by sinusoidal modulation of *individual* particle production, then $v_{2,2}$ should factorise:

 $v_{2,2}(p_T^a, p_T^b) = v_2(p_T^a)v_2(p_T^b).$

Tested for 3 p_T^b bins vs track multiplicity $N_{\rm ch}^{\rm rec}$. Extract v_2 from combinations of $p_T^{a,b}$ bins in $v_{2,2}$:

 $v_2(p_{T1}) = v_{2,2}(p_{T1}, p_{T2}) / \sqrt{v_{2,2}(p_{T2}, p_{T2})}.$

Results: top row shows fitted $v_{2,2}$, middle shows v_2 . Latter shows clear agreement between p_T^b and substantial independence of multiplicity at both \sqrt{s} . Bottom row shows p_T dependence of v_2 .

Interpretation: modulation strength vs. N_{ch}^{rec}

Relative size of ridge modulation $\sim Gv_{2,2}/FY^{\text{periph}}(0)$ \Rightarrow study *G* and *F* vs $N_{\text{ch}}^{\text{rec}}$:

Different datasets study N_{ch}^{rec} dependence of Y^{periph} extraction by subdividing the $N_{ch}^{periph} \in [0, 20]$ range.

 $v_{2,2}$ fairly stable with N_{ch}^{rec} + linear growth of G + flattening of F \Rightarrow increase in ridge visibility with N_{ch}^{rec}

Interpretation: modulation strength vs. N_{ch}^{rec}

Relative size of ridge modulation $\sim Gv_{2,2}/FY^{\text{periph}}(0)$ \Rightarrow study *G* and *F* vs $N_{\text{ch}}^{\text{rec}}$:

Different datasets study N_{ch}^{rec} dependence of Y^{periph} extraction by subdividing the $N_{ch}^{periph} \in [0, 20]$ range.

 $v_{2,2}$ fairly stable with N_{ch}^{rec} + linear growth of G + flattening of F \Rightarrow increase in ridge visibility with N_{ch}^{rec}

Summary

- ► The near-side ridge is still a major puzzle in LHC physics. Still there in high-multiplicity 13 & 2.76 TeV *pp* events!
- A new fit of the $\Delta \phi$ modulation in these *pp* events shows excellent consistency with a single $2\Delta \phi$ Fourier mode, which not only produces the near side ridge but also beneficially modifies the away side peak with increasing N_{ch}^{rec} .
- Comparison of the v_{2,2} Fourier coefficient in Δφ yields between p_T bins of trigger and partner tracks reveals single-particle modulation coefficients, v₂, independent of N^{rec}_{ch} and p^b_T: consistent with azimuthal modulation of individual particle production.
- ► It hence appears that the *pp* and *p* + Pb ridge phenomena have the same source...but exactly what that is remains to be seen!