Multi-particle production in small systems from CGC

Prithwish Tribedy

7th International Workshop on Multiple Partonic Interactions at the LHC

The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy

outline

- Introduction
- Framework of color glass condensate
- Phenomenology of high multiplicity events
- Combining CGC with PYTHIA

Based on the work done in collaboration with : K. Dusling, L. McLerran, B. Schenke, S. Schlichting & R. Venugopalan

Multi-particle production at high energies

Goal : Study correlated production of particles

$$\left\langle \frac{\mathrm{d}N}{\mathrm{d}y_1 \,\mathrm{d}^2 \mathbf{p}_{\perp 1} \cdots \,\mathrm{d}y_q \,\mathrm{d}^2 \mathbf{p}_{\perp q}} \right\rangle \Longleftrightarrow \left\langle \frac{\mathrm{d}N}{\mathrm{d}y_1 \,\mathrm{d}^2 \mathbf{p}_{\perp 1}} \right\rangle \cdots \left\langle \frac{\mathrm{d}N}{\mathrm{d}y_q \,\mathrm{d}^2 \mathbf{p}_{\perp q}} \right\rangle$$

Focus : Collisions of small systems p+p and p+Pb are interesting as final state effects are minimal

We need :

- An *ab-initio* framework of particle production
- Full treatment of different sources of fluctuations
- State-of-the art treatment of fragmentation

Phenomena we want to describe

arXiv: 1011.5531

Origin of high multiplicity events

Phenomena we want to describe

5

Multi-particle production at high energies in Regge Gribov limit $(x \rightarrow 0)$

Colliding hadrons/nuclei :

• Saturation : Non-linear process strops growth of gluons, semihard saturation scale $Q_s(x) > \Lambda_{QCD}$

6

Multi-particle production at high energies in Regge Gribov limit $(x \rightarrow 0)$

Colliding hadrons/nuclei :

- Saturation : Non-linear process strops growth of gluons, semi-hard saturation scale Q_s(x) > Λ_{QCD}
- Gluon dominated wave function, peaked at $Q_s(x \sim x_0 e^{-Y})$

Multi-particle production at high energies in Regge Gribov limit $(x \rightarrow 0)$

Particle production :

• t-channel exchange of ladder like emissions of gluons,

Multi-particle production at high energies in Regge Gribov limit $(x \rightarrow 0)$

McLerran, Venugopalan hep-ph/9309289

Color Glass condensate effective field theory \rightarrow *ab-inito* framework to this problem

Details of the CGC framework

Input is constrained by dipole-cross sections in e+p/A collisions

Perturbative approach

Employ k_T-factorization (p_T>Q_s), dilute-dilute/dense systems

Non-perturbative approach

 Full solutions of CYM on 2+1D lattice : IP-Glasma Monte-Carlo model of initial conditions

Multi-particle productions

Dumitru, Gelis, McLerran, Venugopalan 0804.3858

CGC framework is extendable to n-particle correlations

2ⁿ(n-1)! topologies

Description of Multiplicity distribution/ high multiplicity events

IP-Glasma model : combines CGC framework & different sources of initial state fluctuations

- 1. Collision geometry and impact parameter
- 2. Color charge
- 3. Rare Fock-Space configurations

(I) Fluctuation of collision geometry

- Collision geometry is not calculable from first principle
- Eikonal model with thickness profile from HERA data

Proton profile

 $T_{p}(\mathbf{s}_{\perp}) = \frac{1}{2\pi B_{G}} \exp\left(\frac{-\mathbf{s}_{\perp}^{2}}{2B_{G}}\right)$

Overlap function $T_{pp}(b) = \int d^2 \mathbf{s}_{\perp} \ T_p^A(\mathbf{s}_{\perp}) \ T_p^B(\mathbf{s}_{\perp} - \mathbf{b}_{\perp}).$ Schenke, Tribedy, VenugopalarS 311.3636

Impact parameter distribution

$$\frac{dP}{d^2b}(b) = \frac{1 - e^{-\sigma_{\rm gg}N_g^2 T_{pp}(b)}}{\int d^2b \left(1 - e^{-\sigma_{\rm gg}N_g^2 T_{pp}(b)}\right)}$$

(II) Fluctuation of color charge

For a given geometry fluctuations of color charge —> Negative Binomial distribution at each impact parameter

Convolution of many NBDs

However the distribution is not wide enough to describe data

Some sources of fluctuation missing

(III) Intrinsic fluctuations of saturation scale

Input to CGC framework —> dipole cross section e+p/A

Color dipole picture : distribution of partons —> dist. of color dipoles

With evolution of rapidity each dipole split with probability $\sim \alpha_s dY$ —> dipole splitting is however stochastic

Stochastic dipole splitting —> not present in BK/JIMWLK —>beyond CGC

Intrinsic fluctuations of saturation momentum of a proton/nuclei

Marquet, Soyez, Xiao hep-ph/0606233

Stochastic splitting of dipole leads to a distribution of Qs

$$P(\ln(Q_S^2/\langle Q_S^2\rangle)) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\ln^2(Q_S^2(\mathbf{s}_\perp)/\langle Q_S^2(\mathbf{s}_\perp)\rangle)}{2\sigma^2}\right) \qquad \sigma^2(Y) = \sigma_0^2(Y_0) + \sigma_1^2(Y - Y_0)$$

Distribution of multiplicity

McLerran, Tribedy 1508.03292

Origin of High multiplicity events (Tail of distributions)

High multiplicity events -> rare configuration of high color charge density (1/g²)

Azimuthal Correlations in CGC

- Intrinsic momentum space correlation from initial state
- Originate probe scattering off a color domain
- Suppressed by number of color sources/domains

Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi, Venugopalan 1009.5295 Kovner, Lublinsky 1012.3398 Dusling, Venugopalan 1201.2658 Kovchegov, Wertepny 1212.1195 Dumitru, Giannini 1406.5781 Lappi, Schenke, Schlichting, Venugopalan 1509.03499

Very distinct from Hydrodynamic flow (driven by geometry)

Two particle correlation in CGC

Two particle correlation in CGC

gluon emissions between two triggered hadrons—> broadening of the away side (de-correlation)

Origin of ridge-like correlations

But why ridge appears in high multiplicity events ? In CGC, high occupancy ~ $1/g^2$ —> effective coupling $1/g^2 \times g = 1/g$

Comparison to data

figure: Dusling, Li, Schenke 1509.07939

Dusling, Venugopalan 1201.2658, 1210.3890, 1211.3701, 1302.7018

Consistent explanation in the CGC picture

Energy independence of Ridge

Dusling, Tribedy, Venugopalan 1509.04410

 $N_{\mathrm{ch}}^{\mathrm{rec}}(\sqrt{s}) = N_{\mathrm{ch}}^{\mathrm{rec}}(Q_{\mathrm{s}}^{2}), \ Y_{\mathrm{int}}(\sqrt{s}) = Y_{\mathrm{int}}(Q_{\mathrm{s}}^{2})$

Energy dependence enters only though the saturation scale (only scale in problem) : Scaling of near side yield is natural in CGC approach

Harmonics of azimuthal correlations

Schenke, Schlichting, Venugopalan 1502.01331

Combining CGC and PYTHIA

- Output distribution of Gluons from CGC
- Sample gluons in momentum space
- Connect the gluons close in phase space to color neutral strings
- Input to PYTHIA and fragment into final particles

Implementing PYTHIA Strings

Combining CGC and PYTHIA

- Promising results on multiplicity distributions
- Angular correlations, more observables are to be studied

Outlook

- Including diffractive process
- Full 3+1D with JIMWLK rapidity evolutions
- Implement color-reconnection in PYTHIA
- Comparison to more data from LHC

Summary

The *ab-initio* framework of CGC constrained by HERA DIS data provide successful description of the phenomena seen in high multiplicity events at LHC

back-up

Momentum flow in Glasma graph (origin of ridge-like correlation)

Dusling, Li, Schenke 1509.07939

Qualitative picture of correlations in small systems

Soeren Schlichting Quark Matter 2015

Multiplicity for fixed system size