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¥ Combining CGC with PYTHIA
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Multi-particle production at high energies

Goal : Study correlated production of particles 

We need : 
¥ An ab-initio framework of particle production 
¥ Full treatment of different sources of ßuctuations 
¥ State-of-the art treatment of fragmentation 

Some features of multiplicity distribution

! Color Glass Condensate! ab into framework to study
correlated multi-particle production.

! We need to study the relation between higher and lower
cumulants.

!
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"

"#
#

dN
dy1 d2p! 1

$
. . .

!
dN

dyq d2p! q

"

$n2% = $n%2 + $n% ! Poisson

$n2% = 2$n%2 + $n% ! Geometric

4 / 24

3

Focus : Collisions of small systems p+p and p+Pb 
are interesting as Þnal state effects are minimal



Phenomena we want to describe

Origin of high multiplicity events
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arXiv: 1011.5531



Phenomena we want to describe

Origin of high multiplicity events

Systematics of !"-!# correlations

Energy dependence of ridge in p+p 

Similar underlying dynamics 
must drive these phenomenon 

5

p+p p+A

arXiv: 1011.5531

arXiv: 1509.04776, 1210.5482



Particle production at high energies  
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Multi-particle production at high energies in Regge Gribov limit (x! 0)  

Colliding hadrons/nuclei :  

¥ Saturation : Non-linear process strops growth of gluons, semi-
hard saturation scale Qs(x) > ! QCD 

¥ Gluon dominated wave function, peaked at Qs(x~x0e
-Y

)

arXiv: 1212.1701 



Particle production at high energies  
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Multi-particle production at high energies in Regge Gribov limit (x! 0)  

Colliding hadrons/nuclei :  

¥ Saturation : Non-linear process strops growth of gluons, 
semi-hard saturation scale Qs(x) > ! QCD 

¥ Gluon dominated wave function, peaked at Qs(x~x0e
-Y

)
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Particle production at high energies  
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Multi-particle production at high energies in Regge Gribov limit (x! 0)  

Particle production : 

¥ t-channel exchange of ladder 
like emissions of gluons,  

¥ Strong color Þelds, weak 
coupling, high occupation of 
gluonic states f(k) ~ A2~1/g2

Initial configuration

JIMWLK evolution

dN/d p3



Particle production at high energies  

Color Glass condensate effective Þeld theory !  ab-inito framework to this problem
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Multi-particle production at high energies in Regge Gribov limit (x! 0)  

Particle production : 

¥ t-channel exchange of ladder 
like emissions of gluons,  

¥ Strong color Þelds, weak 
coupling, high occupancy of 
gluonic states ~1/g2

(classical approximation)

Initial configuration

JIMWLK evolution

Single gluon
emission

A (classical field)

McLerran, Venugopalan hep-ph/9309289 



Details of CGC the framework

¥ Fundamental objects are Color 
Charge density matrices ! a(x⊥,Y) 
Local Gaussian distribution W[!]   
(MV-Model)   

¥ Color Þeld before collisions : solving 
Yang Mills equations [D" ,F"# ] = J#  for 
each conÞguration of source  !(x ⊥)
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Domains of 
chromo-electric 
Þeld

Classical Yang-Mills approach : IP-Glasma
Schenke, PT, Venugopalan 1202.6646

E-by-E solve CYM for two colliding nuclei : [Dµ,Fµ! ] = J

!

z

tx− (t=−z) x+  (t=z)x+  (t=z)

A  = pure gauge 1 A  = pure gauge 2

A   = 0

A   = ?

= constant

Color charge density for one A+A collision

Two point correlator for one A+A collision

⇢(x?) sampled from local Gaussian distribution W [⇢]
⌦
⇢a(x?)⇢

b(y?)
↵
= �ab�2(x? ! y?)g

2µ2(x?)

lattice implementation Krasnitz, Venugopalan, hep-ph/9809433 Lappi, hep-ph/0303076

ICPAQGP 2015, Kolkata, India 20/34

Glasma ßux tubes Ñ> 
free streaming gluons

before collisions ($<0)

Classical Yang-Mills approach on 2+1D lattice
Schenke, Tribedy, Venugopalan 1202.6646

E-by-E solve CYM for two colliding nuclei : [Dµ, Fµ⌫ ] = J⌫

TPSC%seminar,%IIT%Roorkee%%29/11/12% 39%

Color%Glass%Condensate%

where

J+ = �(x! )⇢
1

(x" )

J ! = �(x+)⇢
2

(x" )

J i = 0 (11)

and we have restricted ourselves to work in a gauge where the link operators along

the particle trajectories drop out.

Before the collision takes place, we find a solution of the equations of motion

to be

A+ = 0

A! = 0

Ai = �(x! )�(! x+)↵i
1

(x" ) + �(x+)�(! x! )↵i
2

(x" ) (12)

This is a solution of the Yang-Mills equations in all of space-time except on or

within the forward light cone, as shown in Fig. 3. In the forward light cone, we

1 2

3
x+x-

x0

x3

Fig. 3: Regions with di�erent

structures of the gauge poten-

tial:

In regions 1 and 2 we have the

well known one nucleus solu-

tions ↵1,2. While in the back-

ward light cone there the gauge

potential is vanishing we have

a nontrivial solution in the for-

ward lightcone, region 3

must add in extra pieces in order to have a solution. This will be done below. The
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J + = ! (x! )" 1(x" ) J ! = ! (x+ )" 2(x" )

Ax 0 =0 = A(A ) + A(B )

The%field%a|er%collision:%

Once%A
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we%can%calculate:%
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Solve%YangVMills%equa1on%for%

individual%nuclei%on%2+1%D%latce.%

Produced%par1cle%mul1plicity%or%number%density%=%n(k)%%can%be%calculated%by%assuming%

%a%massless%dispersion%rela1on%ω(k)%=%k.%

H ! n(k)! (k)
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"
= " ab" 2(x! ! y! )g2µ2(x! )
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! !! "A (9)

! !! "B (10)
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! !! "B (10)

!V   V "B (11)

!V   V "A (12)
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! !! "A (9)

! !! "B (10)

!V   V "B (11)

!V   V "A (12)
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classical color charge 

classical color Þeld 

D  F   = J 

D  F   = J D  F   = J B

A after collisions ($>0)
D  F   = 0

hep-ph/9809433, 
hep-ph/0303076, 
arXiv: 1206.6805

arXiv: 1202.6646



Details of the CGC framework

Input is constrained by dipole-cross sections in e+p/A 
collisions 

Perturbative approach  

¥ Employ kT-factorization (pT>Qs), dilute-dilute/dense 
systems 

Non-perturbative approach  

¥ Full solutions of CYM on 2+1D lattice : IP-Glasma 
Monte-Carlo model of initial conditions 
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Multi-particle productions Single inclusive distribution

The one gluon production amplitude for Þxed color charges! 1, ! 2

M ⇠ ! 1(k?)

k?
2

! 2(p? � k?)
(p? � k?)2 L! (p, k?) ,

L! (p, k?) ! Lipatov vertex.

pp =
k

p! k

inclusive gluon distribution
!

dN
dypd2

p!

"
⇠ #|M|2$ ⇠ h! ⇤1! 1! ⇤2! 2i

! contracted by Gaussian correlator.

p

%
dN

dypd2
p!

&
=

S!

8" 4

(g2µA )4

g2

Nc(N2
c � 1)

p4
!

ln
'

p!

Qs

(
, p! � Qs

IR divergence (⇠ )
k!

d2
k! / k!

4) ! regulated over 1/ Qs.
S! ! transverse overlap area of collision.
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Single inclusive distribution
The one gluon production amplitude for Þxed color charges! 1, ! 2

M !
! 1(k! )

k!
2

! 2(p! " k! )
(p! " k! )2 L! (p, k! ) ,

L! (p, k! ) # Lipatov vertex.

pp =
k

p! k

inclusive gluon distribution
!

dN
dypd2p!

"
!

#
|M| 2

$
! $ ! "

1! 1! "
2! 2%

# contracted by Gaussian correlator.

p

%
dN

dypd2p!

&
=

S!

8" 4

(g2µA )4

g2

Nc(N2
c " 1)

p4
!

ln
'

p!

Qs

(
, p! & Qs

IR divergence (!
)

k!
d2k! / k!

4) # regulated over 1/ Qs.
S! # transverse overlap area of collision.
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Color Averaging 
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Single-Inclusive

Two particle correlation
Dumitru, Gelis, McLerran, Venugopalan 0804.3858

The dominant contribution comes from disconnected diagrams
connected by color averaging.

p

q

The two gluon production amplitude for Þxed color charges! 1, ! 2

M !
! 1(k1! )

k2
1!

! 1(k2! )
k2

2!

! 2(p! " k1! )
(p! " k1! )2

! 2(q! " k2! )
(q! " k2! )2 Lµ (p, k1! )L! (q, k2! ) ,

!
|M| 2

"
# $ ! !

1! !
1! 1! 1! !

2! !
2! 2! 2% & 9 possible ways to contract.

!
|M| 2

"
# 8 connected & 1 disconnected diagram
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Two particle correlation
Dumitru, Gelis, McLerran, Venugopalan 0804.3858

Correlated and non-correlated contribution

C
2

(p,q) ⌘
⌧

dN
2

dypd2

p?dyqd2

q?

�
�

⌧
dN

dypd2

p?

� ⌧
dN

dyqd2

q?

�
,

# #
connected disconnected
diagrams diagrams

p

q

p

q

8 topologies 1 topology
It can be shown

C
2

(p,q) =
!
2

S! Q2

s

⌧
dN

dypd2

p!

� ⌧
dN

dyqd2

q!

�
,

!
2

! non-perturbative constant.
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Two particle correlation
Dumitru, Gelis, McLerran, Venugopalan 0804.3858

The dominant contribution comes from disconnected diagrams
connected by color averaging.

p

q

The two gluon production amplitude for Þxed color charges! 1, ! 2
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Double-Inclusive

Two particle correlation
Dumitru, Gelis, McLerran, Venugopalan 0804.3858

Correlated and non-correlated contribution
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Dumitru, Gelis, McLerran, 
Venugopalan 0804.3858 



n-particle correlations
multi-particle production topologies

Gelis, Lappi, McLerran 0905.3234

!nq" # q ladders to be contracted.

p
1

p
2

... pq pq ... p
2

p
1

deÞne

! Step 1: Connect 2q building blocks

p
1

... pq pq ... p
1 p p = p

! Step 2: combine loose ends to form connected loops

p
1

p
2

p
3

p
4

# 2q(q $ 1)! topologies

15 / 24

multi-particle production topologies
Gelis, Lappi, McLerran 0905.3234

!nq" # q ladders to be contracted.

p
1

p
2

... pq pq ... p
2

p
1

define

I Step 1: Connect 2q building blocks

p
1

... pq pq 
... p

1 p p = p

I Step 2: combine loose ends to form connected loops

p
1

p
2

p
3

p
4

# 2q(q $ 1)! topologies
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Naturally generates Negative Binomial distribution probability distribution  
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CGC framework is extendable to n-particle correlations 

High-multiplicity events Ñ> originate from correlated production of n-particles
Ñ> Highly non-perturbative 

!
dN

dy1 d2p! 1 . . . dyq d2p! q

"

conn.

=

(q ! 1)!
(Nc

2 ! 1)! Qs
2S!
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dy1 d2p! 1

$
. . .

#
dN

dyq d2p! q

$

%
(Nc

2 ! 1)! Qs
2S! / (2" )

&q

" mq = ( q ! 1)! k
'

øn
k

( q

with

k = !
(Nc

2 ! 1)Qs
2S!

2"
This form of mq deÞnes the Negative Binomial distribution

P
NB

n =
! (k + n)

! (k)! (n + 1)
ønnkk

(øn + k)n+ k

With the generating function

Fk,øn(z) #
")

n=0

zn Pn =" mq #
dq

dzq ln Fk,øn(z)

*
*
*
*
z=1

= ( q ! 1)! k
'

øn
k

( q

16 / 24

!
dN

dy1 d2p! 1 . . . dyq d2p! q

"

conn.

=

(q ! 1)!
(Nc

2 ! 1)! Qs
2S!

2"

#
dN

dy1 d2p! 1

$
. . .

#
dN

dyq d2p! q

$

%
(Nc

2 ! 1)! Qs
2S! / (2" )

&q

" mq = ( q ! 1)! k
'

øn
k

( q

with

k = !
(Nc

2 ! 1)Qs
2S!

2"
This form of mq deÞnes the Negative Binomial distribution

P
NB

n =
! (k + n)

! (k)! (n + 1)
ønnkk

(øn + k)n+ k

With the generating function

Fk,øn(z) #
")

n=0

zn Pn =" mq #
dq

dzq ln Fk,øn(z)

*
*
*
*
z=1

= ( q ! 1)! k
'

øn
k

( q

16 / 24

2n(n-1)!  topologies

Gelis, Lappi, McLerran 0905.3234



Description of Multiplicity distribution/
high multiplicity events

1. Collision geometry 
and impact parameter 

2. Color charge  

3. Rare Fock-Space 
conÞgurations 
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IP-Glasma model : combines CGC framework & different 
sources of initial state ßuctuations 



(I) Fluctuation of collision geometry

Making Nucleus out of proton scattering 

IP-Sat : Color charge distribution inside Nuclei

IP-Sat (Impact Parameter dependent saturation) parametrization HERA
DIS ! proton-dipole scattering matrixSp

dip (r! , x, b! ) " exp
!
# r2Q2

sp/ 2
"

The nuclear scattering matrix is obtained as

SA
dip (r! , x, b! ) =

A#

i=0

Sp
dip (r! , x, b! )

S
i

p

i ! nucleons are distributed according to Fermi distribution.

SA
dip ! distribution of nuclear saturation scaleQs(b! , x) solving :

SA
dip (r! = rS, x, b! ) = exp(# 1/ 2) =$ Q2

s =
2
r2
S

Iteratively solvingx = Qs(b! ,x)"
s ! Qs(b! ,

%
s)

Lumpy color charge density distributiong2µ(x! ) " Qs(x! )

Kowalski, Lappi, Venugopalan 0705.3047
Lappi, arXiv:0711.3039, 1104.3725

Prithwish Tribedy Quark Matter 2014, Darmstadt, Germany 6/23
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¥ Collision geometry is not calculable from Þrst principleP(ln(Q2
S/ !Q2

S")) =
1

#
2!"

exp
!

$
ln2(Q2

S(s! )/ !Q2
S(s! )")

2" 2

"
. (1)

" 2(Y ) = " 2
0(Y0) + " 2

1(Y $ Y0), (2)

Tp(s! ) =
1

2! BG
exp

!
$ s!

2

2BG

"
, (3)

Tpp(b) =
#

d2s! T A
p (s! ) T B

p (s! $ b! ). (4)

dP
d2b

(b) =
1 $ e" ! gg N2

g Tpp(b)

$
d2b

%
1 $ e" ! gg N2

g Tpp(b)
&, (5)
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Overlap function

Impact parameter distribution

¥ Eikonal model with thickness proÞle from HERA data
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color charge distribution in nucleus
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(II) Fluctuation of color charge
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However the distribution is 
not wide enough to describe data

Some sources of ßuctuation missing
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Input to CGC framework Ñ> dipole cross section e+p/A 

(III) Intrinsic ßuctuations of saturation scale
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With evolution of rapidity each dipole split with probability ~ ! s dY  
Ñ> dipole splitting is however stochastic 

Color dipole picture : distribution of partons Ñ> dist. of color dipoles  

Stochastic dipole splitting Ñ> not present in BK/JIMWLK Ñ>beyond CGC
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0/r 2). The individual dipoles seen at impact parameter b are represented
by a short vertical line. The straight line is the sum of their contributions to the
amplitude. In the saturation regime, the dipole description breaks down, that is
indicated by the Þlled box. Upper right corner: the contribution of a single dipole
to T, Eq. (1).

of the two child dipoles. This leads to the following evolution law

T(r )|Y + dY =

!
T(r )|Y with probability 1 ! ! ø" dY

T(z) + T(r ! z) ! T(z)T(r ! z)|Y with probability ! ø" dY
(6)

wherez is distributed according top(z, r ! z|r ) d2z. Taking the limit dY " 0
and replacing! and p from Eqs.(4),(5), one gets4

#Y #T(r )$Y =
ø"

2$

"
d2z

r 2

z2(r ! z)2

#
#T(z)$Y + #T(r ! z)$Y ! # T(r )$Y

! # T(z)T(r ! z)$Y

$
. (7)

As anticipated, Eq. (7) is not a closed equation for#T$: it depends upon
the correlator #T(z)T(r ! z)$Y . A mean Þeld approximation#T(z)T(r ! z)$ %
#T(z)$#T(r ! z)$would cast Eq. (7) into a closed form, known as the Balitsky-
Kovchegov (BK) equation [1,6]. The linearized form of Eq. (7) is recognized
as the (dipole version of) BFKL equation [5].

Let us Þnally discuss the typical shape ofT(r ) as resulting from the previous
considerations. It is a well known characteristic of the BFKL evolution that

4 The impact parameter dependence could be easily put back in Eq. (7). We have
omitted it for simplicity and since it is enough for our purpo se to assume locality
of the evolution.
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Intrinsic ßuctuations of saturation 
momentum of a proton/nuclei
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Marquet, Soyez, Xiao hep-ph/0606233  



Distribution of multiplicity
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High multiplicity events Ñ> rare conÞguration of high color charge density (1/g2)
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Azimuthal Correlations in CGC

! Q" 1
s
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¥ Intrinsic momentum space 
correlation from initial state  

¥ Originate probe scattering 
off a color domain  

¥ Suppressed by number of 
color  sources/domains 

Very distinct from Hydrodynamic ßow (driven by geometry )

Kovner, Lublinsky 1012.3398

Lappi, Schenke, Schlichting, Venugopalan 1509.03499
Dumitru, Giannini 1406.5781                                          

Dumitru, Dusling, Gelis, Jalilian-Marian, 
.     Lappi, Venugopalan 1009.5295

Dusling, Venugopalan 1201.2658
Kovchegov, Wertepny 1212.1195



Two particle correlation in CGC
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" #

Kinematically constrained (back-to-back)

"# = $

trigger

Symmetric around $/2

Glasma Graph

Not kinematically constrained

Dusling, Venugopalan 
1201.2658, 1210.3890



Two particle correlation in CGC

Di-Jet Graph
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0 $/2 $

Y(" #) 

" #

Jet + BFKL emissions

gluon emissions between two triggered hadronsÑ> broadening of 
the away side (de-correlation)  



Origin of ridge-like correlations
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But why ridge appears in high multiplicity events ? 
In CGC, high occupancy ~1/g 2 Ñ> effective coupling 1/g 2 x g = 1/g  

Dusling, Li, Schenke 1509.07939



Picture in high multiplicity events
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double inclusive distribution : origin of ridge
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Comparison to data
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Consistent explanation in the CGC picture

Dusling, Venugopalan 1201.2658, 1210.3890, 
1211.3701, 1302.7018  

52 Kevin Dusling, Wei Li, Bj¬orn Schenke
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Fig. 34. Representative sample of p-Pb data form the CMS, ALICE and ATLAS collaborations of
the per-trigger yield along with calculations within the glasma graph framework.

is evaluated at one-loop running at the relevant momentum scale of the process.
In addition, a correction from non-perturbative dynamics (for example multiple
scattering) is taken into account through the multiplicative pre-factor 1 / ! that
enhances the glasma graph contribution relative to the jet contribution.

The parameter ! is particularly sensitive to the multiplicity distribution (see
Þgure 35) and independent Þts corroborate the value of! = 1 / 6 used in the glasma
graph ridge analysis. Lattice calculations112, 222 Þnd that this constant can be small,
! ! 0.2 " 1, lending support that non-perturbative corrections due to multiple-
scattering enhance the signal.

A comprehensive comparison of the glasma graph framework with all the avail-
able p-p, p-A and d-A data was presented in217 and will not be reproduced here.
Instead in Þgure 34 we show a representative set of p-Pb data from the CMS, ALICE
and ATLAS collaborations along with the corresponding glasma graph calculations.

In summary, the glasma graph framework is able to account for many features
of the data on a qualitative and quantitative level. These include 1) the long range
nature of the correlations, 2) the nearly symmetric near- and away-side ridge (the

p+p p+Pb

Þgure: Dusling, Li, Schenke 1509.07939
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Energy dependence enters only though the saturation scale (only scale in 
problem)  :  Scaling of near side yield is natural in CGC approach

Dusling, Tribedy, Venugopalan 1509.04410



Harmonics of azimuthal correlations
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Combining CGC and PYTHIA

¥ Output distribution of Gluons from 
CGC 

¥ Sample gluons in momentum space 

¥ Connect the gluons close in phase 
space to color neutral strings  

¥ Input to PYTHIA and fragment into 
Þnal particles
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Implementing PYTHIA Strings 

p y

px

gluons

quarks

anti-quarks

strings

y

px

gluons

quarks

anti-quarks

strings

y

py

gluons

quarks

anti-quarks

strings

px py

px

py

yy
y

py

gluons

quarks

anti-quarks

strings

29

Work in progress

Connect the gluons close in phase 
space to color neutral strings 
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Preliminary results 

¥ Promising results on multiplicity distributions 
¥ Angular correlations, more observables are to be studied 

Combining CGC and PYTHIA



Outlook
¥ Including diffractive process 

¥ Full 3+1D with JIMWLK rapidity evolutions 

¥ Implement color-reconnection in PYTHIA 

¥ Comparison to more data from LHC
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Summary
The ab-initio framework of CGC constrained by HERA DIS data provide 
successful description of the phenomena seen in high multiplicity events at LHC



32

back-up
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Novel correlation phenomena 51

p

q

k kk k

p ! k p ! k

q ! k q ! k

Fig. 32. Momentum ßow demonstrating the generation of the near-side collimation. The intrinsic
parton momentum of either hadron is on the order QS and therefore |p ! ! k ! | " |q! ! k ! | " QS
where k ! is a loop momentum constrained such that |k ! | " QS .

form of which can be found in,219 originally Þt to the p-p dihadron correlations
before the availability of any data on p-Pb. The good agreement with the subsequent
p-Pb data shows the robustness of this modeling of non-perturbative hadronization
dynamics. We should stress that the associated yield (the integral over! pq on the
near side) is insensitive to the functional form of the smearing function.

In order to convert the two-gluon correlations presented above into the hadronic
observables, an appropriate hadronization procedure must be used. In what fol-
lows we show results using the NLO KKP parameterization220 of fragmentation
functions for gluon to charged hadrons. It has recently been found that the NLO
KKP results are troublesome at LHC energies221 and suggested that the gluon-to-
hadron fragmentation functions were a probable source of this problem. Extraction
of new fragmentation functions by Þts to the more recently available single inclusive
hadronic data would be highly valuable.

Figure 33 shows a comparison of the di-hadron correlation compared to the
results for high multiplicity p-p collisions. The full numerical calculations of all eight
glasma graphs along with the away-side mini-jet contribution with BFKL evolution
corroborate the qualitative picture shown in Þgure 30. The centrality dependence
is controlled by an appropriate choice of initial saturation scaleQ2

s0 that Þxes the
initial condition in the rcBK evolution equation. Fits to deep-inelastic scattering
constrain Q2

s0 = 0 .168 GeV2 and we take this value as representative of min. bias
p-p collisions. For convenience, we work with integer multiples of this saturation
scale. For example, central p-p (N o! ine

trk ! 110) corresponds to 5-6 times this min.
bias value.

The overall strength of the glasma graph contribution is controlled by " s which

Momentum ßow in Glasma graph (origin of ridge-like 
correlation)

Dusling, Li, Schenke 1509.07939
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Qualitative picture of 
correlations in small systems
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