"Daniele1357 4581 -1-500" by Dan00nad - Own work. Licensed under CC BY-SA 3.0 via Commons

Measurement of identified hadron production as a function of event multiplicity in pp collisions at $\sqrt{s} = 7$ TeV with the ALICE experiment

Benjamin A. Hess Physikalisches Institut, Universität Tübingen for the ALICE Collaboration

> MPI@LHC 2015 Trieste November 27, 2015

From Pb-Pb ...

Detailed studies of particle production in A-A:

- Strangeness enhancement / canonical suppression in pp
- Baryon/meson ratio enhanced at intermediate $p_{\rm T}$

2

3

From Pb-Pb ... via p-Pb ...

Detailed studies of particle production in A-A:

- Strangeness enhancement / canonical suppression in pp
- Baryon/meson ratio enhanced at intermediate $p_{\rm T}$

More recently similar studies in p-A:

Progressive release of canonical suppression?

3

2

 $\Lambda/K_{\rm s}^0$ and p/ π qualitatively similar to A-A

From Pb-Pb ... via p-Pb ... back to the roots: pp

B.A. Hess, U. Tübingen

November 27, 2015

Detailed studies of particle production in A-A:

- Strangeness enhancement / canonical suppression in pp
- Baryon/meson ratio enhanced at intermediate $p_{\rm T}$

More recently similar studies in p-A:

- Progressive release of canonical suppression?
- Λ/K_{s}^{0} and p/ π qualitatively similar to A-A

0-5%

80-90%

3

2

What happens in pp?

1

C

Detectors used in this analysis:

B.A. Hess, U. Tübingen

Detectors used in this analysis:

Inner <u>T</u>racking <u>S</u>ystem ($|\eta| < 0.9$) 6 layers of silicon detectors → trigger, tracking, vertex, PID

<u>Time Projection Chamber ($|\eta| < 0.9$)</u> \rightarrow tracking, PID

<u>T</u>ime <u>Of</u> <u>F</u>light Detector ($|\eta| < 0.9$) multi-gap resistive plate chambers \rightarrow PID

B.A. Hess, U. Tübingen

Detectors used in this analysis:

Inner Tracking System ($|\eta| < 0.9$) 6 layers of silicon detectors \rightarrow trigger, tracking, vertex, PID

<u>Time Projection Chamber ($|\eta| < 0.9$)</u> \rightarrow tracking, PID

<u>Time Of Flight Detector</u> $(|\eta| < 0.9)$ multi-gap resistive plate chambers \rightarrow PID

V0 ($2.8 < \eta < 5.1$ (V0A) & -3.7 < $\eta <$ -1.7 (V0C)) plastic scintillators

→ trigger, beam gas rejection, multiplicity estimate

Multiplicity estimation procedure:

- Use forward rapidity estimator V0M (sum of amplitudes in V0A and V0C)
- Select multiplicity within INEL>0 event class
- Each VOM multiplicity class is related to the average
 of the charged track distribution in |η| < 0.5: <dN_{ch}/dη>

Tranverse Momentum Spectra (I): π and p

- Ratio panel compares to inclusive spectra (INEL > 0)
- Spectra become harder with increasing multiplicity
- Spectral shapes unaltered at high $p_{\rm T} \rightarrow MPI$ / parton luminosity scaling?

Tranverse Momentum Spectra (II): K and Λ

• Similar trends also for strange hadrons

ALI-PREL-98895

 $p_{_{\rm T}}\,({\rm GeV}/c)$

Tranverse Momentum Spectra (III): Ξ and Ω

• ... and for multi-strange hadrons as well

Spectral Ratios (I): Λ / K_s^0

- The ratio changes with multiplicity in a qualitatively similar way for pp, p-Pb and Pb-Pb
- The magnitude of the change is larger in Pb-Pb than in p-Pb and pp
- → However: note that similar percentiles correspond to very different $<dN_{ch}/d\eta>$ for the

three collisions systems

November 27, 2015

B.A. Hess, U. Tübingen

Spectral Ratios (II): p / π

 Also for p/π: qualitatively similar multiplicity dependence of ratio in all 3 systems, but different magnitude

Multiplicity Scaling

Quantitative study: multiplicity dependence of particle ratios in fixed p_{T} interval

- Similar increase of Λ/K_s^0 for similar increase of $\langle dN_{ch}/d\eta \rangle$ in pp, p-Pb and Pb-Pb
 - Note: pp data points in plots via multiplicity estimator at mid-rapidity (potential bias!)
- Fit particle ratio (at given p_T) vs. $\langle dN_{ch}/d\eta \rangle$ with power-law: y = A*x^B
- Same power-law scaling exponent (B) in all three collision systems
- Scaling holds also for p/π

Yield Ratios (I)

Used Levy-Tsallis fits to p_T spectra in order to extract yields (low- p_T extrapolation, contribution from extrapolation to infinite p_T negligible)

Same trends in pp and p-Pb

Yield Ratios (I) – Comparison to Models

- Considered **PYTHIA 6 and 8** with several tunes (P-0, P-2011, 4C, Monash)
- Colour Reconnection (CR) has similar impact on prediction for all tunes
- None of the tunes describes both yield ratios correctly

Yield Ratios (II)

Ratios as a function of multiplicity in pp:

- In very good agreement with INEL result
- Follow same trend as observed in p-Pb
- Λ/π and Ξ/π reach grand canonical saturation values as predicted by Heidelberg-GSI and THERMUS models, whereas Ω/π stays below.

Yield Ratios (II) – Comparison to Models

Ratios as a function of multiplicity in pp:

- In very good agreement with INEL result
- Follow same trend as observed in p-Pb
- Λ/π and Ξ/π reach grand canonical saturation values as predicted by Heidelberg-GSI and THERMUS models, whereas Ω/π stays below.
- Trends predicted by PYTHIA 6 and 8 strongly disagree with data
- CR has only little impact on predicted multiplicity dependence

B.A. Hess, U. Tübingen

pp and p-Pb normalised to pp_{INEL}

 To check how fast the h/π ratio increases with multiplicity for various species:

• Plot $[h/\pi]^{\text{species}}/[h/\pi]^{\text{pp}}_{\text{INEL}}$

- Ratio stays at unity for protons in considered multiplicity range
- The higher the strangeness content of the baryons, the higher the relative rise with multiplicity
- The increase is not baryonrelated, but strangenessrelated

ALI-PREL-98972

Canonical suppression of $[\Lambda, \Xi, \Omega]/\pi$?

Indications:

(1) pp and p-Pb results exhibit the same functional dependence...

(2) ... which is approaching the grand canonical saturation value.

Consistent with canonical suppression scenario??

Canonical suppression of $[\Lambda, \Xi, \Omega]/\pi$?

Indications:

(1) pp and p-Pb results exhibit the same functional dependence...(2) ... which is approaching the grand canonical saturation value.

Consistent with canonical suppression scenario??

 Consider evolution of h/π normalised to value at highmultiplicity limit with charged pion multiplicity

• Trend for $[\Lambda, \Xi, \Omega]/\pi$ roughly described by THERMUS (T=156±10 MeV, R=R_c, γ_s =1, $\mu_B = \mu_Q = \mu_s = 0$; curves are for Pb-Pb only)

ALI-PREL-100901

- Suppression Experimental data for Λ , Ξ , Ω in qualitative agreement with canonical suppression
- **BUT**: Φ seems not to fit into this picture

Summary

The ALICE Collaboration reported on the measurement of identified hadron production as a function of event multiplicity in pp collisions at $\sqrt{s} = 7$ TeV

- $p_{\rm T}$ spectra of π , K, p, Λ , Ξ , Ω : hardening with multiplicity, shape at high $p_{\rm T}$ is unaltered
- $p_{\rm T}$ -differential baryon/meson ratios (p/ π , $\Lambda/K_{\rm s}^{0}$): qualitatively similar evolution with multiplicity in pp, p-Pb and Pb-Pb; with an enhanced production of baryons at mid- $p_{\rm T}$
- h/π ratios:
 - same multiplicity dependence in pp and p-Pb
 - rise faster with increasing multiplicity for baryons with higher strangeness content
 - trends for (multi-)strange baryons not reproduced by PYTHIA 6 and 8

Summary

The ALICE Collaboration reported on the measurement of identified hadron production as a function of event multiplicity in pp collisions at $\sqrt{s} = 7$ TeV

- $p_{\rm T}$ spectra of π , K, p, Λ , Ξ , Ω : hardening with multiplicity, shape at high $p_{\rm T}$ is unaltered
- $p_{\rm T}$ -differential baryon/meson ratios (p/ π , $\Lambda/{\rm K}_{\rm S}^0$): qualitatively similar evolution with multiplicity in pp, p-Pb and Pb-Pb; with an enhanced production of baryons at mid- p_{T}
- h/π ratios:
 - same multiplicity dependence in pp and p-Pb
 - rise faster with increasing multiplicity for baryons with higher strangeness content —
 - trends for (multi-)strange baryons not reproduced by PYTHIA 6 and 8

THANK YOU for your ATTENTION!

Resonance Ratios to K

- Large uncorrelated uncertainties (shaded boxes)!
 - Φ/K ratio seems to be rather flat
 - Φ might behave similar to K as a function of multiplicity

Tranverse Momentum Spectra (IV): K_S⁰

• Similar trends as the other considered species

Multiplicity Scaling (II)

As for Λ/K_s^0 , the p/ π ratio at given p_T depends on $\langle dN_{ch}/d\eta \rangle$ in a similar way for p-Pb and Pb-Pb

Overview of individual analyses contributing to the combined results for $\pi/K/p$.

The specified $p_{\rm T}$ ranges are those used for the combination of the results, somewhat broader ranges are possible in order to cross-check the individual results.

Analysis	PID	$p_{\rm T}$ Range (GeV/c)			Analysis
	Technique	π	K	р	Region
ITS stand-alone	n-σ cuts on ITS	0.1-0.6	0.2-0.6	0.3-0.6	y < 0.5
Bayesian PID	Bayesian probability	0.2-2.5	0.3 – 2.5	0.5-2.5	y < 0.5
TPC-TOF	n- σ cuts on TPC and TOF	0.25 – 1.2	0.3 – 1.2	0.45 - 2.0	y < 0.5
TPC-TOF Fits	n- σ fits to TPC and TOF	0.25 - 2.5	0.3 – 2.5	0.45 – 2.7	y < 0.5 (TPC) $ \eta < 0.2 (TOF)$
TPC Template Fits	TPC d <i>E</i> /dx Template Fits	> 2.0			$ \eta < 0.8$

TPC Multi-template Fit – Modelling the TPC d*E***/d***x* **Response**

TPC d*E*/d*x* of track depends on: momentum, mass, θ , d*E*/d*x*, #PID clusters, shape asymmetry

Extract dependencies with data driven methods:

- > Clean samples from TPC, TOF and V0's
- Fit $\langle dE/dx \rangle$ (θ averaged) with Bethe-Bloch model
- > Extract dependence on θ (vs. 1/<dE/dx>)
- (Rel.) resolution map in (θ, 1/<dE/dx>)-bins as function of #PID cluster
- Parametrise asymmetric shape

Track parameters from sample of TPC tracks at given $p_{_{\rm T}}$ to generate templates for each species

TPC Multi-template Fit – Overview

- Binned log-likelihood fit:

Minimise difference between measured dE/dx distribution and template sum weighted by species fractions is

 \rightarrow Fit parameters: Particle fractions as function of $p_{_{\rm T}}$

- Regularisation:

Ensure continuity of fractions versus $\ln(p_{T})$

Topological Cuts for Strangeness Analysis

November 27, 2015

B.A. Hess, U. Tübingen

Invariant Mass Spectra (Strangeness Analysis)

November 27, 2015

B.A. Hess, U. Tübingen

Acceptance x Efficiency for Strangeness Analysis

- Acceptance x efficiency (Axε) estimated via PYTHIA-Perugia-0 simulation propagated through full ALICE geometry using Geant3
- Ξ and Ω values obtained using a Monte Carlo sample with enriched cascade content
- Axe verified to be independent of the charged particle multiplicity