Tuning Your Radio to Axions and Their WISP Cousins

 Andrei Lobanov MPIfR Bonn / University of Hamburg

- Standard Model: *SU*(3)×*SU*(2)×*U*(1) gives us (nearly) all things we may need in life.
- □, The beauty and clearness of the dynamical theory, [...], is at present *obscured by two clouds […]" (Lord Kelvin, 1900) … still true today?*
	- gravitation and dark energy
	- ...plus some "lesser evils" such as dark matter, strong CP problem, etc...
- \Box Most of the solutions proposed invoke a "hidden sector" of the global parameter space, weakly coupled to "normal matter" of the SM through weakly interacting massive (WIMP) or slim (WISP) particles.

- WISP, and *axions* and *hidden photons* in particular, are strong dark matter candidates. Direct detection of WISP or putting bounds on their properties are important tasks for cosmology and particle physics.
- \Box A number of experimental methods have been employed, both for laboratory and astrophysical searches – all relying on WISP interaction (coupling, kinetic mixing) with ordinary matter (most often: photons).
- □ Radio (24 MHz—2.4 THz): excellent sensitivity to WISP signal and access to DM/DE relevant particle mass ranges (0.1µev – 10meV)

Current Limits: Axions

Max-Planck-Institut Mür[\] Radioastronomie

 -2 $e^+ + e^- \rightarrow \gamma + inv.$ Vacuum Birefringence **Read Dung** -4 -6 SW1987 $LSW (ALPS-I)$ -8 $\operatorname{Log}_{10} g$ [GeV $^1\!1$ Solar v Helioscopes (CAST) HB Telescopes -10 $SN \gamma$ -burst Transparence **IAXO** $x_{\rm ion}$ **LEADER AND** -12 **BBN** cooling hint axion CDM **CMB** -14 **ALP CDM ADMX-HF EBL ADMX** -16 -18 -8 -2 10 -12 -10 -6 $\bf{0}$ $\overline{2}$ 8 4 6 -4

 Log_{10} m_a [eV]

MAX-PLANCK-GESELLSCHAFT

Direct DM Searches

 \Box Dark Matter: sits in a halo, can be virialized with a velocity dispersion similar to the galactic velocity dispersion ($\sigma_{\alpha} \sim 300$ km/s).

□ Axion DM: axion-photon conversion: expect a line with width of $\Delta v/v \sim (\sigma_{\rm q}/c)^2 \sim 10^{-6}$

 t_{mes} , SNR – measurement time and SNR; T_n – noise temperature; V_0 , Q_0 – cavity volume and quality factors; B_0 – magnetic field strength; $\mathcal{G}_{\phi/\gamma}$ – form factor; ρ_0 – DM density; $Q_{\phi/\gamma}$ – quality factor of DM signal; $m_{\phi/\gamma}$ – particle mass

- \Box Resonant measurements have a bandwidth Δ $\nu/\nu \sim 1/Q \sim 10^{-5}$, hence one needs to tune a cavity and make a large number of measurements in order to scan over a broad range of particle mass.
- Search range: $\Delta v/v \sim 10^5$, which requires ~ 10^{10} measurement steps.
- Alternatives: use multiple resonant modes (requiring fewer tuning steps) or avoid using the resonance at all.

ADMX cavity tuned by an assembly of two tuning rods

WISP Dark Matter eXperiment

Direct WISP dark matter searches in the $0.8-2.0 \mu\text{eV}$ mass range

Sebastian Baum¹, Babette Döbrich², Dieter Horns¹, Joerg Jaeckel³, Reinhard Keller⁴, Denis Kostin², Michael Kramer⁴, Axel Lindner², Andrei Lobanov^{4,1}, Wolf-Dietrich Möller², Javier Redondo^{5,6}, Andreas Ringwald², Jacek Sekutowicz², Alexey Sulimov², Dieter Trines², Alexander Westphal²

Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany \pm ${}^{2}Deutsches$ Elektronen Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany ³Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany ⁴ Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany ${}^{5}Ludwig-Maximilians-Universität$, Theresienstr. 37, D-80333 München, Germany ⁶ Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München, Germany

WISPDMX Overview

- □ WISP Dark Matter eXperiment (WISPDMX) is a pioneering search for hidden photon and axion dark matter in the 0.8-2.0 µeV range, exploring the particle masses below the mass range covered by ADMX.
- WISPDMX utilizes a HERA 208-MHz resonant cavity and a 40 dB amplifier chain, and plans to make use of a strong magnet (e.g. 1.15 T H1 magnet).
- \Box Uses multiple resonant modes in the 200-600 MHz range.
- □ Completed Phase 1: hidden photon searches at nominal resonances of the cavity.
- □ Currently in Phase 2: HP searches with cavity tuning
- □ Phase 3: ALP searches

1 – 208 MHz HERA cavity; 2 – cavity ports; 3 – antenna probes; 4 – WantCom 22 dB amplifier; 5 – MITEQ 18 dB amplifier; 6 – network analyzer (HP 85047A); 7 -- control computer, with onboard digitizer (Alazar ATS-9360, 1.8Gs/s)

A. Lobanov Accessible Resonant Modes

MAX-PLANC

□ Five resonant modes identified which have non zero form factors for hidden photon measurements.

□ Outside resonance: $G_f \approx 0.0018$ hence measurem ents in the entire spectral range could also be used for constraining χ .

Max-Planck-Institut λ für λ Radioastronomie

A. Lobanov

MAX-PLANC

- No HP signal detected. Gaussian distribution of measured power around rms; no daily modulation; no significant RFI signals.
- Limits, assuming $\rho_0 = 0.39$ GeV/cm³ and $Q_{\phi/\gamma} = 2.2 \cdot 10^6$:

HP Exclusion Limits

 \Box Exclusion limits from WISPDMX Phase 1 measurements: evaluating the broadband signal. □ Further improvements (factor \sim 10²) will come from stronger

 amplification, improving the frequency resolution, optimizing the antenna probes and cooling the apparatus.

WISPDMX: Phase 2

- Tuning plunger assembly: one plunger ready, second being manufactured
- CST simulations of plunger assembly consisting of two plungers.
- \Box The assembly should provide effective coverage of up to 56% of the 200-500 MHz range (up 70% with additional vacuum-pump tuning)
- It will also improve form factors of several modes
- Optimal antenna location is on the plunger frame

MAX-PLANC

□ WISPDMX: expected HP dark matter exclusion limits from tuned cavity measurements.

Log₁₀ m_{γ} [eV]

□ WISPDMX: expected ALP exclusion limits from measurements with tuned cavity combined with the solenoid magnet from H1 detector (1.15 Tesla)

 $Log₁₀ m_a$ [eV]

- \Box Scanning over a large mass range?
- \Box Trying to get to lower particle masses? \rightarrow

Need to decide between going

narrow

or wide broad

 \Box Tn~1K, B~5T, V~100 l, G~1.0

 \Box Tn~100K, B~5T, V~10 m³, G~0.01

A. Lobanov Max-Planck-Institut Need for Broadband Searches

 \Box Intrinsic measurement band $W_{meas} \sim 10^{-5}$ ν limits severely the integration time and frequency scanning rate of microwave cavity searches

WISPDMX scanning speed for axions

$$
\frac{df}{dt} = \frac{f}{Q} \frac{1}{t} \sim \frac{30 \text{ MHz}}{\text{year}} \left(\frac{4}{\text{SNR}}\right)^2 \left(\frac{3 \text{ K}}{T_n}\right)^2 \left(\frac{g}{10^{-15}/\text{GeV}}\right)^4 \left(\frac{V}{460 \ell}\right)^2 \left(\frac{B_0}{1.15 \text{ T}}\right)^4 \left(\frac{\mathcal{G}_{\phi}}{0.5}\right)^2
$$

$$
\times \left(\frac{208 \text{ MHz}}{f}\right)^2 \left(\frac{Q}{2.7 \times 10^4}\right) \left(\frac{10^6}{Q_{\phi}}\right) \left(\frac{\rho_0}{0.3 \text{ GeV}/\text{cm}^3}\right)^2.
$$

and hidden photons

$$
\frac{df}{dt} = \frac{1}{N_{\rm rep}} \frac{f}{Q} \frac{1}{t} \sim \frac{135 \text{ MHz}}{\text{year}} \left(\frac{3}{N_{\rm rep}}\right) \left(\frac{4}{\text{SNR}}\right)^2 \left(\frac{300 \text{ K}}{T_n}\right)^2 \left(\frac{\chi}{10^{-14}}\right)^4 \left(\frac{V}{460 \ell}\right)^2 \left(\frac{\mathcal{G}_{\gamma'}}{0.5 \times 0.25}\right)^2
$$

$$
\times \left(\frac{208 \text{ MHz}}{f}\right)^2 \left(\frac{Q}{2.7 \times 10^4}\right) \left(\frac{10^6}{Q_{\gamma'}}\right) \left(\frac{\rho_0}{0.3 \text{ GeV/cm}^3}\right)^2, \tag{2.19}
$$

Want to have an experiment without resonant enhancement required.

Detection Limits

O SNR of detection: SNR = $\frac{P_{\text{out}}}{P_{\text{noise}}}$ P_{noise} $W t =$ <u>Pout</u> $\kappa_B T_n$ $\frac{t}{W}$, *W* – signal bandwidth, $T_{\rm n}$ – system noise temperature. **□** Since $P_{\text{out}} \propto V B^2$ and *W* is set by velocity dispersion of the dark matter, improving the detection SNR can be achieved by: – increasing measurement time, *t*; *... expensive* – reducing the system noise, *T*n; *... reaching quantum limit* – increasing the magnetic field strength, *B*; *... destructive ;-)* – increasing the volume, *V*. *... with TOKAMAKs? spherical reflectors? or dedicated radiometry chambers?*

Spherical Reflectors

- \Box Employing spherical reflectors enhance (focus) the near field EM signal from the reflector surface which arises due to its interaction with WISP dark matter (Horns et al. 2013). Promising for masses above 10 μeV.
- Suzuki+ 2015, first results. Pilot study at DESY/Karslruhe (Döbrich et al.)

- \Box Large chamber volume (>10 m³), strong and stable magnetic field
- Tore Supra: initial measurements shown Q~100 and strong RFI at ν<1 GHz.
- **Q** Wendelstein (W7-X): stellarator may fare better, with $Q \sim 100$ ($v/1GHz$)⁻¹ and double shielding of the plasma vessel – but complicated B-field.

W7-X: magnetic coils and plasma vessel

Critical Issues

- □ Background and RFI noise: need to understand the background and reduce it as far as possible. Measurements made at Tore Supra have shown that RFI may be a serious impeding factor and shielding my be required
- \Box Maximizing the effective volume: the receiving element may need to be specially designed so as to maximize the volume coverage. Use of a fractal antenna printed on a dielectric plate and located on the perimeter of the main radius of the torus may provide a viable solution

field

Radiometry Chambers?

- \Box "Squashing the cauliflower" and going to Q=1 with a detection chamber "coated" on the inside with fractal antennas.
- \Box Should get a decent bandpass over a broad range of frequencies.
- Should get the sensitivity of the total inner surface area by adding (correlating) signals from individual fractal antenna elements.
- The correlation should also provide full 4π directional sensitivity of measurement.

- **T** Time resolution of \sim 3 ns (L_{xvz}/m).
- \Box Both time and spectral resolution (~10 Hz) are achieveable with exitsing radioastronomy detector backends
- \Box Coherent addition of signal effective Q ~ number of detector elements.
- Coherent addition of signal full directional sensitivity
- \Box Possible prototype: cylindrical chamber, with fractal antenna elements at both ends of the cylinder.

□ WISP detection relies on low energy experiments; experiments in the radio regime are particularly promising

 WISPDMX: First direct WISP dark matter searches in the 0.8-2.0 μeV range: completing measurements at nominal resonances (Phase 1).

\Box Next steps:.

- WISPDMX: Definitive searches for hidden photon (Phase 2) and ALP (Phase 3) dark matter in the 0.8-2.0 μeV range.
- Further design and implementation of broad-band approaches to WISP searches over the 10^{-2} –10⁻⁷ eV mass range.

 \Box This is an emerging field of study that has a great scientific potential.