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Introduction

• Reminder of the motivations for WISPs
• Misalignment production of WISPy dark matter
• Cosmological constraints
• Motivation for WISPs in string theory
• What properties we might expect ...
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Axions, ALPs, and Hidden Photons
Axions/ALPs:
• Periodic fields: φi ∼ φi + 2πfi
• Pseudo-Nambu Goldstone bosons of some symmetry
• Most important couplings are to QCD (for axion), photons

and electrons

L ⊃ −
a

fa

g2
3

32π2
GµνG̃

µν−
Ciγγ

fi

e2

32π2
φFµνF̃

µν+
Cei
2fi

ēγµγ5e∂µφi

• Constrained fa & 109 GeV, upper bound of 1012 GeV in
absence of dark matter dilution mechanism

Hidden photons:
• Extend the (MS)SM by at least one U(1) gauge

(super)field:

L ⊃ χab
2
FaµνF

µν
b −

θM

8π2
FaµνF̃

µν
b + (iχ̃abλaσ

µ∂µλb+h.c.)
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Bottom-up motivation for WISPs

For anyone who was asleep yesterday and/or has wandered in
to the wrong meeting – many different experiments:
• Haloscopes
• Helioscopes
• Dish antennae
• Beam dumps – e.g. the SHiP experiment!
• Light shining through walls
• Molecular interferometry

and of course cosmic searches such as isocurvature and
tensor modes, rotation of CMB polarisation, ...

• Opportunity to probe weak couplings or very high energy
scales!
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ALPs
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ALPs: Bottom-up motivation

L ⊃ −
g2

3

32π2

aCa3

fa
Fb3,µνF̃

b,µν
3 −

e2

32π2

Ciγ

fai
ai FµνF̃

µν +
Cie
2fai

ēγµγ5e∂µai ,

• Axion as solution to strong CP problem!
• Misalignment dark matter!
• For a light ALP(< 10−9 eV) anomalous transparency of the universe for VHE

gamma rays
fi/Ciγ ∼ 108 GeV

• ... and for same value of fi/Ciγ, steps is power spectrum at critical energy of
100 GeV, hinting atmALP ∼ 10−9 ÷ 10−10 eV.

• X-ray hint of ALPs from the Coma cluster (Conlon, Marsh, Powell, ...)

fa

Caγ
. 1010GeV

√
0.5/∆Neff

• (Now in doubt) solution to non-standard energy loss of white dwarfs

fi/Cie ' (0.2÷ 2.6)× 109 GeV

• These are compatible (need Ciγ/Cie & 10) and could be searched for in future
experiments!!
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Misalignment dark matter

• An axion or ALP is a periodic field: it can take any initial value in [0, 2πfa] since
the potential energy in the field is negligible compared to energies in early
universe.

• During inflation any scalar field will undergo quantum fluctuations of magnitude
HI
2π → σΘ = HI

2πfa

• At later times, the scalar field behaves classically with equation of motion

φ̈+ 3Hφ̇+m2
φφ = 0

• While 3H>m, the field is damped and retains its initial vev.
• When 3H =m, it starts to oscillate and will behave like a bath of particles; the

energy stored in the field is 1
2m

2φ2
0 ∼ 1

2m
2
af

2
aθ

2 which starts to red-shift like
matter ∝ a−3.

• One complication: for the QCD axion, the mass decreases rapidly as the
temperature increases; instanton calculations give

Vinst ∼
mumdmsΛ

9
QCD

(πT)8
→ma ∼ T−4
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ALP vs axion dm
• So for the QCD axion we find

Ωah
2

0.112
' 6×

(
fa

1012GeV

)7/6 (
θa

π

)2

• While for an ALP we find

Ωah
2

0.112
' 1.4×

(mai

eV

)1/2
×
(

fai
1011GeV

)2 (
θa

π

)2

This means that the parameter space can be very different:
• For the QCD axion we are restricted by dark matter at high fa
• The QCD axion always mixes with pions and therefore has restrictions coming

from nucleon couplings
• It will always have a minimal coupling to electrons and photons coming from this

too (more later) which bound fa & 109 GeV.
• For an ALP, we have no such restrictions except that it should not couple strongly

to QCD!
• In fact we have a “maximum” allowed coupling to the photon:

giγ ≡
α

2π

Cai
fai

.
α

2πfai

• Gives the lifetime of

τai =
64π

g2
iγm

3
ai

' 1.3× 1025s

(
giγ

10−10GeV−1

)−2 (mai

eV

)−3
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DM constraints
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Cosmological constraints
There are important cosmological constraints:
• Black hole superradiancema > 3× 10−11eV (or . 10−21eV) ([ Arvanitaki,

Dubovsky ’10])
• Isocurvature – since the axion is effectively massless during inflation its

fluctuations correspond to isocurvature, and there are strong constraints:
βiso = PII

PRR+PII
< 0.035 (Planck 2015)

• We know that PRR = 2.196+0.051
−0.060 is the amount of primordial fluctuations

PII '
4σ2
θ

PRRθ2

(
Ωai
Ωm

)2

→HI <2.8× 10−5

(
Ωm

Ωai

)2

θfai

→HI <0.9× 107 GeV

(
fa

1011

)0.408

QCD axion

• Also have the constraint from non-observation of tensor modes that
r = PTT/PRR < 0.11 and PTT =

2H2
I

π2M2
P

giving

HI < 8.3× 1013 GeV
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ALPs in IIB strings

S ⊃ −

(
dcα +

MP

π
Aiqiα

)
Kαβ

8
∧ ?

(
dcβ +

MP

π
Ajqjβ

)
+

1

4πMP
riαcαtr(F∧ F) −

riατα

4πMP
tr(Fi ∧ ?Fi).

• Axions periodic fields, cα → cα +MP, Tα = τα + icα ∼ Tα + iMP

• Decay constants determined by diagonalising
(K0)αβ ≡ ∂2(−2 logV)

∂τα∂τβ
:

fα ≡
MP

4π

√
λα,aα ∼ aα + 2πfα

• Canonically normalise the axion fields

cα = 2aγCβα, Cγ′αKαβC
T
βδ′ = δγ′δ′ , Cγ′αC

T
αδ′ = λ−1

γ′ δγ′δ′ ,

• Read off couplings to gauge groups:
faj
Cji

=
1

8π

MP

rjαCTαi
×
{

1/2 U(1)
1 SU(N)

.
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The LARGE Volume Scenario
• Type IIB string theory, Complex structure moduli stabilised at SUSY value by

three-form fluxes, gives superpotentialW0

• Volume of Calabi-Yau in “swiss-cheese” form

V = τ
3/2
b − τ

3/2
s −h(τi)

• Or K3-fibration:
V = τ

1/2
b′ τb − τ

3/2
s −h(τi)

• → Instanton/gaugino condensate generate contribution to superpotential
W ⊃Ae−aτs , but typically only need one or two! (c.f. KKLT)

• Kähler potential with α ′ corrections K ⊃ −2 log

[
<(τb)

3/2 + ξ/2

]
, needs

h2,1 > h1,1

• Volume, τb stabilised at exponentially large value: V ∼ 106 for GUT, ∼ 1014 for
intermediate scale strings, ∼ 1030 for TeV strings

• Small cycle τs stabilised at aτs ∼ logV

• AdS vacuum with���SUSY, small uplift required to dS by anti-branes, D-terms,
F-terms, instantons at quivers ...

• (MS)SM realised onD7 branes on collapsed cycles τa ∼ 0 (Quiver locus) or
& 1 (Geometric regime)
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The LVS axiverse
• For LARGE volume scenario (LVS) need

W =W0 +Ae−aτdP , W0 ∼ 1

• τdP is a diagonal del Pezzo blow-up→ removes issue of chirality.
• Do not need other NP effects: others can be fixed by D-terms, α ′ and gs effects

- open (V ∼
W2

0
V3 ) and closed (V ∼

W2
0

V4 ) string loops.

• Non-vanishingD-terms are dangerous (V ∼ V−2) but are useful for stabilising
cycles relative to each other

ξa =
1

4πV
qajt

j = 0→ linear combination fixed

• Each NP term in superpotential and each linearly independent D-term eats one
axion

• In scenario where LARGE cycle unwrapped/no D-term, have at least
nax = h1,1 − 1 −d > 1 light axions

• Generically this number may be large, particularly if many unwrapped cycles.
• Since further single instanton/gaugino condensate contributions may not be

generic→ very light axions→ ALPs.
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Swiss cheeses
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Decay constants
We expect

fα ∼

{
MP/τα non − local axion

Ms ∼MP/
√
V local axion

e.g. for V = 1
9
√

2

(
τ

3/2
b − τ

3/2
s

)
we have 4πg−2

b = τb ∼ V2/3 and

K0 ∼

(
V−4/3 V−5/3

V−5/3 V−1

)
Have fab =

√
3

4π
MP
τb
' MP

4πV2/3 , fas = 1√
6(2τs)

1/4
MP

4π
√
V
' Ms√

4πτ
1/4
s

.

L ⊃ cb
MP

g2
b tr(Fb ∧ Fb) +

cs

MP
g2
s tr(Fs ∧ Fs)

'

[
O

(
1

MP

)
ab +O

(
τ

3/4
s

V1/2MP

)
as

]
tr(Fb ∧ Fb)

+

[
O

(
1

MP

)
ab +O

(
1

τ
3/4
s Ms

)
as

]
tr(Fs ∧ Fs).

• Non-local ALPs can have small decay constants, e.g. MP
V2/3 , but the couplings to

matter are always &MP suppressed
• If we want ALPs in the classic axion window, they need to be “local,” and have an

intermediate string scale: fi ∼Ms ∼
MP√

V
, V ∼ 1015.

• To have an axion and ALP, need several intersecting local cycles



Introduction ALPs Vector dark matter Other

Matter couplings
In global SUSY, derive matter couplings from∫

d4θΦΦ
(
Tα + Tα

)
⊃ (ψσµψ)∂µcα .

In SUGRA find

L ⊃ ∂Tα
(

log[e−
K0

2 K̂i]

)
(ψiσµψ

i
)∂µcα.

nb this is different to moduli couplings!
We then translate these into ALP-matter couplings (to axions ρ′′i ):

X̂iψ

fi
=

1

3MP
Cβα


tα
2V + 1

tab
rairbjkijkK

kα Matter on curve tab
tα
2V + raα

τa
Matter on cycle a

tα
2V Matter at a singularity

• Dependent on conjectures for Kähler metrics

• Loop corrections should be important for quiver locus, tα2V = 0 or
∼ V−2/3.
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Loop couplings to matter fields
Couplings to electrons is most important:

L ⊃
CAie
2fi
ēγµγ5e∂µφi +

CVie
2fi
ēγµe∂µφi,

CA,V
ie =X̂A,V j

e +∆iγγ[C
A,V
ie ] + δai∆QCD[C

A
ae], (1)

where X̂A,V j
e ≡ 1

2 (X̃
j
eR ± X̃

j
eL) and ∆QCD[C

A
ae] =

3α2

4π ∆Caγγ log(ΛQCD/ma)
In SUSY theories, loops involve gauginos as well as photons:

L ⊃−

∫
d2θ (iφi)

gaγ

4
WαWα ⊃

1

4
giγφiFem,µνF̃

µν
em +

1

2
giγ∂µφiλ

ασµλ, (2)
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Loop couplings cont’d

To a rough approximation we can take

∆iγγ[C
A
ie] ≈

3α2

4π2
Ciγ log(MSUSY/me) +

2α2

4π2
Ciγ log(Λ/MSUSY),

∆iγγ[C
V
ie] ≈

2α2

4π2
Ciγ log(Λ/MSUSY), (3)

where MSUSY is the scale of superpartner masses, and Λ the
cutoff of the theory, of the order of the string scale.
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Couplings summary

Bottom line:
• For quiver locus, matter couplings to most axions

dominated by loops:

Ciγ/Cie ∼
4π2

2α2 logΛ/MSUSY
∼ 104 ÷ 105

• For geometric regime,

Ciγ/Cie ∼
8π

3
τi ∼ 10÷ 100 local cycle

i.e. this geometric regime ratio is exactly what we want to
explain the astrophysical anomalies!
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Masses

May have higher superpotential corrections to masses, and also Kähler potential
corrections [Conlon, ’06]

VδW =
−2πnτiW0

V2
e−2πnτi cos 2πnci

VδK ∼
W2

0

V3
e−2πnτi cos 2πnci

(4)

Ts axion has a mass ∼MP/V, but “local” axions with masses from Kähler corrections
have

mlocal ∼ e
−nπτlocal ×

{
MP Superpotential terms or QCD-like masses
m3/2 Kähler potential terms

Can be ∼ 10−11 eV for SM cycle sizes, or less.
Non-local axions get negligible masses: e−πτb < 10600 for V = 104,τb ' V2/3.
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ALPs: remarks

Closed strings:
• In string theory it is hard to escape from the constraint fa/Caγ <Ms for closed

string ALPs.
• The coupling to electrons can, however, be significantly suppressed.
• There should generically be an “axiverse” of ALPs, most with couplings .M−1

P
and logarithmically distributed masses.

• Finding acceptable models of inflation and soft masses for intermediate-scale
strings is problematic.

• ... detection of appreciable r would be almost certainly incompatible with
intermediate-scale closed-string ALPs.

Open strings, that I haven’t discussed:
• Non-universal, essentially field theory/Sugra models
• Tempting to try to identify the intermediate scale with the SUSY-breaking scale.
• Very model-dependent and need to understand the matter spectrum first too.
• But should be compatible with GUTs and high-scale inflation: implies the matter

spectrum is not just MSSM.
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Non-standard cosmology

Another important point for stringy model is often have non-standard cosmology:
• The lightest modulus will decay at late times after dominating energy density of

universe
• In typical SUGRA scenarios have “cosmological moduli problem”:
Gammaτ ∼m3

τ/M
2
P =H(MeV)→mτ ∼ 30 TeV.

• For the LVS in the sequestered regime with a string scale ∼ 1014 GeV compatible
with GUTs, the soft masses are ∼MP/V

2 but the heavy modulus mass is
MP/V

3/2 ∼ 106 GeV
• The heavy modulus decays to ALPs and Higgs bosons before BBN
• It induces reheating at T ∼ GeV.
• This can dilute axion or other dark matter if the reheating is after it has been

formed (e.g. belowΛQCD).
• This can widen the classic axion window to 1014 GeV!
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Hidden photons
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Vector dark matter

Almost exclusively people consider dark matter to be comprised of
fermions or scalars:

• WIMPs

• axion/ALPs,

• FIMPs

• SIMPs

• etc etc.

However, why not consider a new massive vector?
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Stability

Typically the obstruction to a vector dark matter particle is the need
for stability on the age of the universe:

• For a WIMP, we could invoke a new symmetry to protect it, e.g.
Z2 of [Lebedev, Lee, Mambrini, 1111.4482]: Xµ → −Xµ.

• → Such a symmetry prevents kinetic mixing with the
hypercharge, and also classic gauge currents→ the interactions
must therefore seem “exotic” or just be effective.

• Alternatively, we should produce the vectors via a different
mechanism→ then we can make the interactions sufficiently
weak!

In the following I shall consider classic abelian “hidden photons”
which interact through kinetic mixing only (so not a Z′)
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Decays of hidden photons
Recall

L =−
1

4
FµνF

µν −
1

4
XµνX

µν +
m2
γ′

2
XµX

µ −
χ

2
FµνX

µν + JµAµ

T = 0︸ ︷︷ ︸−→−
1

4
FµνF

µν −
1

4
XµνX

µν +
m2
γ′

2
XµX

µ + Jµ(Aµ − χXµ)

Once we have produced hidden photon dark matter, it must survive to the present time:

• Ifmγ′ > 2me then the decay to two electrons will be very fast since
Γ ∼ χ2mγ′ for largemγ′ so would needm . 10−40χ−2GeV

• Even below this threshold have γ ′→ 3γ

• Also must carefully take care of resonance effects since for finite T we have
non-zero photon massmγ:

χ2
eff '

χ2m4
γ′

(m2
γ −m2

γ′)2 +µ4
(µ ≡ max{χm2

γ′ ,mγ′Γ})

• Effects characterised by τ2 ∼
χ2mγ′
Hres

which controls amount of energy lost by
condensate into the photon bath.
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Parameter space
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Misalignment production
• Above we only considered survival of an initial abundance of hidden photons.
• For such weakly interacting an light particles misalignment production would

seem appropriate!
• However, since it is a vector the transverse modes redshift; XµXµ = − 1

a2X ·X
for gµν = diag(1,−a2,−a2,−a2)

• Then ρ ∼
m2
γ′
a2 X ·X→ we would require an enormous initial energy density

• One solution is to add a non-minimal coupling to gravity

Lgrav =
κ

12
RXµX

µ

• This term is also introduced in vector inflation models!
• If κ = 1 we can redefine Xi = Xi/a and find

Ẍi + 3HẊi +m
2
γ′Xi = 0

• Then we recover the usual case of misalignment dark matter!
• Unfortunately such a term does not seem to be present with the correct

magnitude in string theory.
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Longitudinal modes

A very new result by [Graham, Mardon, Rajendran, 1504.02102]:
• Consider a standard coupling of hidden photon with Stückelberg mass to gravity.
• During inflation, the longitudinal mode couples much more strongly to the

inflaton than the transverse modes
• A relic abundance of vectors is produced with

Ωγ′ =Ωcdm ×
√

mγ′

6× 10−6 eV

(
HI

1014GeV

)2

• Unlike ALP misalignment production, the fluctuations are sharply peaked around

1/k∗ ∼ 3.2× 10−10Mpc

√
10−5eV

mγ′

• ... hence isocurvature fluctuations from the dark matter produced this way are
never observable in the CMB.
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Hidden photons from string theory

So can we motivate such a hidden photon parameter space?

• R-RU(1)s
• D-branes carryU(N) = SU(N)×U(1) gauge group
• Several stacks of D-branes to realise (MS)SM

→Generically severalU(1)s (most anomalous)
• Some non-anomalousU(1)s massive via Stückelberg mechanism
• May have hidden branes for global consistency of model
• τb provides potential hyperweak U(1) with g ∼ gYMV−1/3 [Burgess, Conlon,

Hung, Kom, Maharana, Quevedo 2008] or possibly even weaker for K3
fibrations, up to g ∼ gYMV−1/2

• May have hidden anti-D3 branes for uplifting to dS, or uplifting by hidden D-term
• → hiddenU(1)s

What are the masses and mixings?
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Kinetic Mixing in SUSY Theories

• For supersymmetric configurations, kinetic mixing is a
holomorphic quantity:

L ⊃
∫
d2θ

{
1

4(gha)
2
WaWa +

1

4(ghb)
2
WbWb −

1

2
χhabWaWb

}
• Runs/is generated only at one loop

• SUSY operator contains mixing of gauge bosons, gauginos and
D-terms:∫
d2θ−

1

2
χhabWaWb + c.c. ⊃−

χab

2
FaµνF

µν
b + (iχ̃abλaσ

µ∂µλb + h.c.)

− χabDaDb
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Kinetic Mixing in SUSY Theories II

• Can show that physical mixing obeys a Kaplunovsky-Louis type formula

χab
gagb

= <(χhab) +
1

8π2
tr

(
QaQb logZ

)
−

1

16π2
κ2K

∑
r

nrQaQb(r)

• Only Kähler potentials from light fields charged under both contribute→ does
not run below messenger scale (except for gauge running)

• “Natural” size given by one-loop formula, assuming tr(QaQb) = 0:

χhab = −
1

8π2
tr

(
QaQb logM/Λ

)
→ χab = −

gagb
16π2

tr

(
QaQb log |M|2

)
∼ −

gagb
16π2

• Depends only on the holomorphic quantities!
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Kinetic Mixing and LARGE Volumes

• Holomorphic kinetic mixing parameter depends only on
complex structure and open moduli:

χhab = χ1−loop
ab (zi,yi) + χ

non−perturbative
ab (zi, e

−Tj ,yi)

• For separated branes, no light states→ no volume
dependence from Kähler potential

• Fluxes do not break supersymmetry
• Complex structure moduli typically O(1), or small in warped

throats
• Expect typical χhab ∼ O(1/16π2)

• Find χab ∼ gagb/16π2

• Hyperweak brane leads to mixing χab ∼ 10−3V−1/3 (swiss
cheese) or χab ∼ 10−3V−1/2 (K3 fibre)
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Kinetic Mixing vs String Scale
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Kinetic Mixing with �����SUSY
• If mixing cancels, may still be induced by SUSY breaking effects

• Look for operators at one loop:

∆L ⊃
∫
d4θWaWb

(
Ξ+ Ξ

M2
+
D2(Ξ+ Ξ)2

M4
c.c.

)
+WaWb

W
c
W
c

M4
,

• Can show that first and second are zero if SUSY kinetic mixing cancels

• Second has different gauge structure, but non-zero only for hyperchargeD termW3W′

• Find (from toroidal calculation)M−4 ≈ (4π5M4
s)

−1V−2/3 ∼ (MsR)
−4:

χYγ′ ∼
g2
Y

4

f(ti)

V

gγ′gY
4π5

(
v

Ms

)4

cos2 2β

• Ms ∼ 1015GeV have χ ∼ χ ∼ 10−59,Ms ∼ 1TeV find 10−27.

• Mixing with hidden D-term 10−33, 10−25 respectively→ maybe good dark matter candidate
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Stückelberg Mechanism

• Massless modes of axions generateU(1) masses:

S ⊃ −

(
dcα +

MP

π
Aiqiα

)
Kαβ

8
∧ ?

(
dcβ +

MP

π
Ajqjβ

)
+

1

4πMP
riαcαtr(F∧ F) −

riατα

4πMP
tr(Fi ∧ ?Fi).

• Sensitive only to Kähler moduli→ masses are diluted by volumes in compact
space, and the gauge couplings:

m2
ab =gagb

M2
P

4π2
qaα(K0)αβqbβ

• 1meV possible for TeV scale strings
• NB KK modes of axions generate kinetic mixing.
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Isotropic masses

• Consider isotropic swiss cheese, with volume form

V =
1

6

∫
CY
J∧ J∧ J =

1

6

(
3t2

1t2 + 18t1t
2
2 + 36t3

2

)
=

1

9
√

2

(
τ

3/2
b − τ

3/2
s

)
• Get the matrix (ε ≡

√
τs/τb� 1)

K0 =
3

2τ2
b

(
ε−1 −3ε
−3ε 2

)
and K−1

0 =
2τ2
b

3

(
ε 3ε2/2

3ε2/2 1/2

)
.

• τb ∼ V2/3,gb ∼ τ
1/2
b so get forU(1) wrapping the large cycle

m ∼
MP

V
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Predictions
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Anisotropic branes
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Anisotropic masses
• If we instead have two dimensions very large, then t ∼ V, can get small masses

without small gauge couplings, since the two-forms can propagate orthogonally
to the brane

• K3 fibrations are ideal:

V = t1t
2
2 +

2

3
t3

2 =
1

2

√
τ1

(
τ2 −

2

3
τ1

)
• τ1 = t2

1,τ2 = 2t1t2 with t2 large
• Metric and inverse:

K0 =

(
τ−2

1 0
0 2τ−2

2

)
, and K−1

0 =

(
τ2

1 0
0 τ2

2/2

)
• Now wrap a brane on τ1 and put a gauge flux on t1; have

χ ∼
10−2

√
τ1

, mγ′ ∼
MP

V

• Can realise χ ∼ 10−6 andmγ′ ∼ meV
• In this case also have “Dark Force” KK modes!!
• Can obtain this scenario with stabilised moduli by adding extra blow-up mode

V = t1t2 (t2 + t3) =
√
τ1τ3 (τ2 − τ3)
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Hidden KK Modes
• For large hidden dimensions may detect KK modes of

hidden gauge boson in beam dump experiments→
effectively have massive hidden gauge bosons even
though gauge group unbroken!

• Visible sector wraps small cycle→ does not have KK
modes

• In swiss cheese model, TeV strings (V ∼ 1030) give masses
O(10)MeV and mixing χ ∼ 10−12

• Beam dumps sensitive up to O(100)MeV at χ ∼ 10−7, but
now have lots of KK modes!

• χeff ∝ χ×
√
NKK

• For swiss cheese with TeV strings, χeff ∼ 10−10 → may be
accessible with increased luminosity

• Actually can get much more realistic values if we allow for
one large dimension...
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Anisotropic predictions
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Dark matter parameter space
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Connection with other WISPs
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Hints of an intermediate scale

Recall the several hints of an intermediate scale:

• Classical axion window of 109 − 1012 GeV.

• X-ray hint of ALPs from the Coma cluster (talks by Marsh,
Powell, ...)

L ⊃−
gaγ

4
aFµνF̃

µν = −
1

4

αem

2π

Caγ

fa
aFµνF̃

µν

gaγ &10−13GeV−1
√

0.5/∆Neff →
fa

Caγ
. 1010GeV

√
0.5/∆Neff

• And the anomalous transparency of the universe –
fa
Caγ

. 109GeV, cooling of White dwarfs etc.
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Sterile neutrinos
• Idea of [Cicoli, Conlon, Marsh, Rummel]: dark matter decays to an ALP.
• Corresponds very well with galaxy simulations which suggest fermionic Warm

Dark Matter (they have been predicting 1 − 2 keV for several years! E.g. de
Vega, Sanchez 1304.0759] as one example).

• So they suggest a sterile neutrino with coupling to an ALP:

∂µa

Λ
Nγµγ5ν↔

mN

Λ
aNγ5ν, Λ ' 1017GeV

• In LVS, for direct couplings, we have

Λ '
{
Ms/g

2 SM in geometric regime
�MP Sequestered

• This does not seem to fit well; however, we can instead couple via the Majorana
mass:

L ⊃ −e−TNN→ −mN
a

fa
Nγ5N→ −mN

sinθN
fa

aNγ5ν

• This implies sinθN ∼ fa/1017GeV but we also have θN & 10−6 to generate
enough dark matter through non-resonant production→ we are right at the
border of this, but corresponds very well!
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Two possibilities
ALPs are closed strings→ intermediate string scale:
• Natural scale for axions and TeV SUSY
• Requirement to eat the axion on the large cycle in the LVS

may lead to a hidden photon with mass greater than
O(GeV).

• Problems with unification, inflation and cosmological
moduli.

ALPs are open strings:
• Some new physics at the intermediate scale to break the

approximate global symmetries.
• If we allow unification of gauge couplings, and take V . 108

in string units, have high gravitino mass & 1010 GeV.
• Either need sequestering of masses, high scale SUSY, or

something else.
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Searching elsewhere for ALPs
The SHiP experiment is an interesting place to search for all kinds of new physics –
including ALPs.
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