Small scale structure in DM

Adrian Jenkins, ICC, Durham

Overview

- CDM N-body methods, halo and sub halo mass functions - structure of haloes - annihilation predictions - mass-conc relation - velocity distributions - fine phase-space structure
- WDM differences from CDM
- Future directions

N-body methods

- Simulations of cosmological volumes >30 years
- Huge increases in the volume surveyed, relatively modest improvements in resolution. State-of-the-art simulations ~ 1 trillion particles.
- Resimulation or zoom simulations ~20 years. Large improvements in numerical resolution. State-of-theart calculations ~ 5-15 billion particles

Halo mass functions

The halo mass function

Jenkins et al 2001

Hellwing et al 2015 (in prep)

Internal halo structure

- Determined from N-body simulations of individual haloes
- e.g. Aquarius simulations 6 `MW-mass' haloes Aq-A-1 with a billion particles within r200 (Springel et al 2008), GHALO (Stadel et al 2009) also billion+ particles
- Phoenix clusters haloes (9), Ph-A-1 with a billion particles within r200

z = 48.4

T = 0.05 Gyr

The six aquarius halos.

Density profile $\rho(r)$: convergence test

Slope of the density profile

The mass function of substructures

The subhalo mass function is shallower than $1/M^2$

Most of the substructure mass is in the most massive subhalos - slope is close to the critical value where each decade of subhalo mass contains the same amount of mass.

Virgo consortium Springel et al 08

The subhalo number density profile

- The spatial distribution of subhalos is independent of mass
- Most subhalos are at large radii -subhalos are more effectively destroyed near the centre
- Most subhalos are far from the Sun our view of the signal from our own halo is very special.

How lumpy is the MW halo?

Mass fraction in subhalos as a function of the cutoff mass in CDM PS

The Milky Way halo is expected to be quite smooth!

Substructure mass fraction within $R_{sun} < 0.1\%$

Annihilation in CDM

• What annihilation signal is predicted for a given annihilation cross-section?

A blueprint for detecting halo CDM

Supersymmetric particles annihilate and lead to production of γ -rays which may be observable by FERMI

The production of annihilation radiation at **x** depends on: $\int \rho^2(\mathbf{x}) \quad \langle \sigma v \rangle \, dV$ halo density at **x** $\int \int dv \, dv$ cross-section

 \Rightarrow Theoretical expectation requires knowing $\rho(\mathbf{x})$

Accurate high resolution N-body simulations of halo formation from CDM initial conditions

The cold dark matter power spectrum

A blueprint for detecting halo CDM

Supersymmetric particles annihilate and lead to production of γ -rays which may be observable by Fermi

A blueprint for detecting halo CDM

To calculate annihilation luminosity need contribution from 4 components:

- 1. Smooth emission from main halo
- 2. Smooth emission from resolved subhalos
- **3**. Emission from unresolved subhalos in main halo
- 4. Emission from substructure of subhalos

Springel et al 2008

Substructures within substructures

There are substructures embedded within other structures. We detect 4 generations

The hierarchy is NOT self-similar and is heavily dependent on the degree of tidal stripping of subhalos.

More on substructure convergence

Convergence in the size and maximum circular velocity for individual subhalos cross-matched between simulation pairs.

Biggest simulation gives convergent results for

V_{max} > 1.5 km/s r_{max} > 165 pc

<u>Much</u> smaller than the halos inferred for even the faintest dwarf galaxies

Virgo Consortium 2008

Mass and annihilation radiation profiles of a MW halo

Ph-A-1

Extrapolation to Earth mass

Gao, Frenk, Jenkins, Springel & White '12

Institute for Computational Cosmology

Mass-concentration relation

 Crucial for predicting the annihilation rate from the smallest substructures

$$c_{200} = \frac{r_{200}}{r_{-2}}$$

$$\frac{\mathrm{d}\ln\rho(r)}{\mathrm{d}\ln r} = -2$$

Mass - concentration relation

Sanchez-Conde & Prada 2014

Mass - concentration relation

Ludlow et al 2014

Semi-analytic model - Correa et al 2015 Ludlow et al 2014

Summary of annihilation

- N-body simulations of DM haloes alone are insufficient to predict the total annihilation rate
- Large extrapolations are required as substructure is very important
- The mass-concentration relation for substructures deduced from simulations of MW-mass and cluster haloes gives large boost factors due to the substructure
- Recent work suggest the mass- concentration relation flattens at smaller masses, reducing the boost, but significant extrapolations are still required to estimate the mass - concentration relation at the free streaming scale.
- Further numerical work needed to reliably determine the mass-concentration relation at redshift zero for the smallest haloes/substructures

Velocity distributions of particles within haloes

- What signal should a direct detection experiment expect?
- How lumpy is the halo at the solar radius?

Direct detection of WIMPS

- WIMP + nucleus → WIMP + nucleus
- Measure recoil energy (~10KeV)
- Suppress background enough to be sensitive to a signal, or...

 Search for an annual modulation due to the Earth's motion in the halo

Adapted from Joachim Edsjo

Springel et al (2008)

Probing DM near the Sun!

CDM distribution around the Sun

CDM distribution around the Sun

Direct detection: halo velocity distribution

Experiments assume "standard halo modeL" → Gaussian vel distr Simulations → fewer particles in tail of distribution; smooth fall off to escape vel.

... at Solar Circle

Fine-scale phase space structure

- Detectors on ~1m scale how smooth is the velocity distribution of particles on this scale?
- Vogelsberger & White 2011 using Aquarius haloes

CDM – very small scales

CDM is **cold** and **collisionless**

CDM lies on 3D hypersurface in 6D phase-space

Thickness of line: primordial velocity dispersion

Amplitude of wiggles: velocity due to density perturbations

Wind-up: growth of an overdensity

Phase space sheet:

regions of very high CDM density

Vogelsberger & White 2011

SELF-SIMILAR GRAVITATIONAL COLLAPSE IN AN EXPANDING UNIVERSE¹

JAMES A. FILLMORE AND PETER GOLDREICH California Institute of Technology Received 1983 October 10; accepted 1983 December 5

Starting point Analytic 1D model

ABSTRACT

We derive similarity solutions which describe the <u>collapse of cold</u>, <u>collisionless</u> matter in a perturbed Einstein-de Sitter universe. We obtain three classes of solutions, one each with planar, cylindrical, <u>and spherical symmetry</u>. Our solutions can be computed to arbitrary accuracy, and they follow the development of structure in both the linear and nonlinear regimes.

Subject headings: cosmology — relativity

Caustic Annihilation radiation 1AU³ - 1D gravity -

caustic spheres on top of smooth annihilation signal

Caustic spheres at the solar position have a thickness of the order of **Astronomical Units!**

Resolving fine-grained caustics with N-body simulations

<u>Problem:</u> N-body simulations have too coarse phase-space sampling (→ missing many orders of magnitude in mass resolution/particle number)

- <u>Solution:</u> Follow the local phase-space evolution for each particle $(\rightarrow \text{ with a phase-space geodesic deviation equation})$
- calculation of stream density
- identification of caustics

- Monte-Carlo estimate for intra-stream annihilation
- \rightarrow allows caustic annihilation calculation

$$\frac{\mathrm{d}\mathcal{A}_{s,i}}{\mathrm{d}t} = \frac{\langle \sigma v \rangle_{\chi}}{m_{\chi}^2} m_i \rho_{s,i}$$

[Implementation in GADGET-3]

Vogelsberger & White 2009

MV et al (2008)

FIG. 10.—Spherical symmetry: instantaneous location of all particles in phase space for $\epsilon = 0.8$.

Aq-A-5 (harm.) 10¹⁸ Aq-A-4 (harm. Aq-A-3 (harm 10¹⁶ Aq-A-5 (median 2 Aq-A-4 (median 10¹ Aq-A-3 (median) number of streams 10¹² 10¹⁰ **v/v**₂₀₀ 0 10⁸ 10⁶ -1 10⁴ -2 10² 75 150 225300 10⁰ 2 3 5 4 0.1 10 r/r₂₀₀ Vogelsberger & White 2011^{#/*200} 43

10²⁰

Caustics and streams

Summary density/velocity distributions

- Dark matter haloes smooth density at the solar radius
- Very small probability the Earth is within a substructure
- Velocity distributions close to Gaussian, but with interesting features at 10% level
- At least a million streams contributing to 50% of the dark matter flux, none more important than ~0.1% of the total flux
- Simulations probably weakly converging if anything haloes will be even smoother

Warm Dark Matter

 Potential candidates for the dark matter e.g. sterile neutrinos (Dodelson & Widrow 1994)

Free streaming

Lovell et al 2012

Example: nuMSM power spectra

CDM

WDM

Lovell et al 2012

Spurious structure in WDM

Lovell et al 2014

Halo mass function in WDM

Bose et al 2015 (in prep)

Subhalo mass function in WDM

51

Mass - Concentration relation

52

WDM cores

- WDM haloes should have cores
- But core sizes are predicted to be very small (Maccio et al 2012, Shao et al 2013)
- Simulating cores for WDM candidates, which have not been ruled out, is very challenging

Summary WDM

- Simulating substructure more challenging to model due to fragmentation
- However substructure is less interesting not important for predicting decay radiation
- Mass-concentration relation flattens the central regions of WDM haloes of a given mass form later

Including baryonic physics ...

Eagle simulation: Schaye et al 2015

More complicated DM

- Smallest DM structures known are associated with dwarf galaxies
- If CDM correct, galaxy formation is complex only a proportion of dark matter haloes of a given mass occupied by galaxies, and galaxy formation may affect the structure of these haloes - e.g. changing cusps to cores
- Alternatively DM may be more complex e.g. Self-Interacting Dark matter, Psi-CDM

S.I.D.M.

Vogelsberger, Zavala, Loeb 2012

Summary

- N-body methods crucial to understanding the structure of dark matter on small scale
- CDM extremely rich structure. At the solar circle DM expected to appear smooth and near Gaussian velocity distributions
- CDM substructure important for annihilation radiation predictions but still significant uncertainty in predictions
- WDM substructure hard to model accurately for numerical reasons.
- Modelling baryonic processes may be essential for making accurate predictions for haloes around galaxies

Future directions for N-body modelling of structure

- CDM: Mass-concentration relation and density profiles of the smallest haloes in CDM over the whole mass range is not well determined. More work is needed ...
- WDM: Properties of substructures not that well determined new methods may be required - e.g. T4PM (Hahn & Angulo arXiv:1501.01959)
- This field would be revitalised if dark matter is detected ...

THE END

Adrian Jenkins, ICC, Durham

