Perspective of discoveries from Intergalactic Space

Matteo Viel – INAF/OATS & INFN/TS Off-the-beaten-track workshop – ICTP Trieste - 14th April 2015

OFF-THE-BEATEN-TRACK TOPIC #1:

MASSIVE NEUTRINOS

COSMOLOGICAL NEUTRINOS - I: LINEAR MATTER POWER

COSMOLOGICAL NEUTRINOS- II: NON-LINEAR MATTER POWER

COSMO NEUTRINOS –III: CHARACTERIZING THE NEUTRINO HALO

Villaescusa-Navarro, Bird, Garay, Viel, 2013, JCAP, 03, 019 Marulli, Carbone, Viel+ 2011, MNRAS, 418, 346

<u>COSMO NEUTRINOS – IV: MODELLING NEUTRINOS WITHOUT N-BODY SIMS.</u>

$$P(k) = \left(\frac{\bar{\rho}_{\rm c}}{\bar{\rho}}\right)^2 P_{\rm c}(k) + 2 \frac{\bar{\rho}_{\rm c}\bar{\rho}_{\nu}}{\bar{\rho}^2} P_{\rm c\nu}(k) + \left(\frac{\bar{\rho}_{\nu}}{\bar{\rho}}\right)^2 P_{\nu}(k)$$

- Assumption: all matter within haloes 1h and 2h terms
- Simple modelling of non-linear power spectra (including cross-spectra)
- When used to predict ratios w.r.t. massless case it is as good as hydro/N-body to 2% level
- When used to compute actual power it suffers from limitation and it is good at the 20% level

Massara, Villaescusa, MV (2014) – Castorina+ (2014) for bias and mass functions

Intergalactic Medium (IGM)

i.e. diffuse matter between galaxies

i.e. an off-the-beaten-track observable

<u>The Lyman- α forest</u>

Lyman- α absorption is the main manifestation of the IGM

Tiny neutral hydrogen fraction after reionization.... But large cross-section

The Intergalactic Medium: Theory vs. Observations

CONSTRAINTS on NEUTRINO MASSES FROM Planck: I

 $\Sigma m_{v} < 0.93 \text{ eV}(2\sigma)$

Costanzi+ 2014, JCAP

 $\Sigma m_{v} < 0.24 \text{ eV}(2\sigma)$

Costanzi+ 2014

 $\Sigma m_{v} < 0.14 \text{ eV}(2\sigma)$

Costanzi+ 2014

CONSTRAINTS on NEUTRINO MASSES FROM Planck+BAO+old Lya: IV

Costanzi, Sartoris, MV, Borgani (2014)

29 eV 59 eV

2 eV

.9 eV

GROWTH OF STRUCTURES AT HIGH REDSHIFT

Constraint on neutrino masses from SDSS-III/BOSS $Ly\alpha$ forest and other cosmological probes

Nathalie Palanque-Delabrouille,^{*a,b*} Christophe Yèche,^{*a*} Julien Lesgourgues,^{*c,d,e*} Graziano Rossi,^{*a,f*} Arnaud Borde,^{*a*} Matteo Viel,^{*a,h*} Eric Aubourg,^{*t*} David Kirkby,^{*j*} Jean-Marc LeGoff,^{*a*} James Rich,^{*a*} Natalie Roe,^{*b*} Nicholas P. Ross,^{*k*} Donald P. Schneider,^{*t,m*} David Weinberg^{*a*}

GRID OF HYDRODYNAMICAL SIMULATIONS

	Parameter	Central value	Range
	$n_s \ldots \ldots$	0.96	± 0.05
Cosmological	$\sigma_8 \ldots \ldots$	0.83	± 0.05
Parameters	$\Omega_m \dots$	0.31	± 0.05
	$H_0 \ldots \ldots$	67.5	±5
	$T_0(z=3)$	14000	± 7000
Astrophysical	$\gamma(z=3)$.	1.3	± 0.3
Parameter	A^{τ}	0.0025	± 0.0020
	$\eta^{ au}$	3.7	± 0.4
Neutrino mass	$\sum m_{\nu}$ (eV)	0.0	0.4, 0.8

Astrophysics usually has a different redshift evolution compared to cosmology!

If my data cover a relatively wide redshift range then I can break the degeneracies

METHOD

DATA: thousands of low-res. Spectra for neutrino constraints. Few tens for cold dark matter coldness

SIMULATIONS: Gadget-III runs: 20 and 60 Mpc/h and (512³,786³,896³)

Cosmology parameters: σ_8 , n_s , Ω_m , H_0 , m_{WDM} , + neutrino mass Astrophysical parameters: z_{reio} , UV fluctuations, T_0 , γ , $\langle F \rangle$ Nuisance: resolution, S/N, metals

METHOD: Monte Carlo Markov Chains likelihood estimator + very conservative assumptions for the continuum fitting and error bars on the data

Parameter space: second order Taylor expansion of the flux power

$$P_F(k,z;\mathbf{p}) = P_F(k,z;\mathbf{p}^0) + \sum_{i}^{N} \frac{\partial P_F(k,z;p_i)}{\partial p_i} \bigg|_{\mathbf{p}=\mathbf{p}^0} (p_i - p_i^0) + \text{second order}$$

NEUTRINO IMPACT - I

NEUTRINO IMPACT - II

BAYESIAN ANALYSIS

FINAL NUMBERS

Parameter	$Ly\alpha + H_0^{tophat}$	$Ly\alpha + CMB$	$Ly\alpha + CMB$	$Ly\alpha + CMB(A_L)$
	$(62.5 \le H_0 < 72.5)$		+ BAO	
$10^{9}A_{s}$	$3.2^{+0.5}_{-0.7}$	$2.20^{+0.05}_{-0.06}$	$2.20^{+0.05}_{-0.06}$	$2.18^{+0.05}_{-0.06}$
$10^2 \omega_{\rm b}$	(fixed to 2.22)	2.20 ± 0.02	2.20 ± 0.02	2.22 ± 0.03
$\omega_{ m cdm}$	$0.110\substack{+0.008\\-0.013}$	$0.1200\substack{+0.0019\\-0.0018}$	$0.1196\substack{+0.0015\\-0.0014}$	0.1191 ± 0.002
$ au_{ m reio}$	(irrelevant)	$0.091\substack{+0.012\\-0.013}$	$0.091\substack{+0.011\\-0.013}$	$0.0871\substack{+0.012\\-0.013}$
n_s	0.931 ± 0.012	0.953 ± 0.005	0.953 ± 0.005	$0.955^{+0.005}_{-0.006}$
H_0	< 70.9 (95%)	$67.2^{+0.8}_{-0.9}$	67.4 ± 0.7	$67.5^{+1.0}_{-1.1}$
$\sum m_{\nu}$ (eV)	< 0.98 (95%)	< 0.16 (95%)	< 0.14 (95%)	< 0.21 (95%)
A_L	(fixed to 1)	(fixed to 1)	(fixed to 1)	1.12 ± 0.10
σ_8	0.84 ± 0.03	$0.830\substack{+0.017\\-0.013}$	$0.830\substack{+0.016\\-0.012}$	$0.818\substack{+0.021\\-0.014}$
Ω_{m}	$0.316^{+0.018}_{-0.021}$	0.316 ± 0.012	0.313 ± 0.009	0.312 ± 0.013

Cosmic Conspiracies?

Baldi, Villaescusa-Navarro, Viel, Puchwein, Springel, Moscardini, 2014

OFF-THE-BEATEN-TRACK TOPIC #2:

COLDNESS OF COLD DARK MATTER

Mainly from Viel, Becker, Bolton, Haehnelt, 2013, PRD, 88, 043502

DARK MATTER DISTRIBUTION

GAS DISTRIBUTION

HI DISTRIBUTION

THE WARM DARK MATTER CUTOFF IN THE MATTER DISTRIBUTION

THE HIGH REDSHIFT WDM CUTOFF

 $\delta_{F} = F/<F>-1$

RESULTS FOR WDM MASS

SDSS + MIKE + HIRES CONSTRAINTS

Joint likelihood analysis

SDSS data from McDonald05,06 not BOSS

WDM SUPPRESSION in 21cm INTENSITY MAPPING

Carucci, Villaescusa, MV, Lapi 2015

Contrary to Lyman-alpha forest HI in intensity mapping signal comes from haloes not filaments

OFF-THE-BEATEN-TRACK TOPIC #3:

UNDERSTANDING THE ISOTROPIC GAMMA RAY BACKGROUND WITH CROSS-CORRELATION TECHNIQUES

See works by Ackermann+14 from Fermi collaboration Fornasa, Sanchez-Conde 15 Xia, Cuoco, Branchini, Viel 2011 Ando 14, Ando+14

IGRB – I: Catalogs and Astrophysical models

TOMOGRAPHY OF THE FERMI-LAT γ -RAY DIFFUSE EXTRAGALACTIC SIGNAL VIA CROSS-CORRELATIONS WITH GALAXY CATALOGS

JUN-QING XIA^{1,2}, ALESSANDRO CUOCO^{3,4,5}, ENZO BRANCHINI^{6,7,8}, AND MATTEO VIEL^{9,10} ApJS, 2015, 217, 15

CATALOGS

SOURCES

IGRB – II: results from astro modelling

 $\frac{Cross-correlations detected:}{2MASS: 3.5\sigma for \theta < 10^{\circ} all energies}$ Main Galaxies: > 3 σ at E>0.5,1 GeV LRG: weak cross correlation QSOs: 2-5 σ NVSS: strong cross corr. but likely to be syst. <u>Main Result:</u> Best fit when SFG are the main contributors 72⁺²³-37% - Conclusions not sensitive to bias or dN/dz BLLac contrib < 5% FSRQs contrib < 10%

IGRB – III: dark matter contribution Annhil. $\propto \Omega_{DM}^2 \frac{\langle \sigma v \rangle}{2m_r^2} \int \rho^2(z) D(z) j_l[k\chi(z)] dz$ Conservative assumption: extra contribution due Decay $\propto \Omega_{DM} \frac{\Gamma_D}{2m_r}$ to dark matter only Regis, Xia, Cuoco, Branchini, Fornengo, MV, arXiv: 1503.05922 3×10⁻⁹ 1111 5² I [GeV cm⁻² s₋₁ sr IGRB 10⁻⁷ SI 2×10⁻⁹ $\left[\mathrm{cm}^{-2}\mathrm{s}^{-1}\mathrm{s}\right]$ 10 2 10 100 01 E[GeV]ann. DM - HIGH $CCF^{\gamma g}(\theta)$ ann. DM - LOW 1×10⁻⁹ dec. DM halo ^correction 0 2MASS - Fermi-LAT E > 500 MeV 1 1 1 1 1 1 1 1 1 1 0.1 100 10

Angle θ [deg]

IGRB – IV: dark matter constraints

IGRB – IV: dark matter constraints

Cross-correlation significantly (>5 times) more constraining than other extragalactic probes like clusters or auto-correlation of the IGRB or IGRB energy spectrum

Adding DM improves the fits

With modest substructure boost thermal wimp cross sections up to few tens of GeV probed

IGRB – V: dark matter + full astro

Cuoco+ 2015

CONCLUSIONS

OFF-THE-BEATEN-TRACK NEUTRINOS: no support for non zero neutrino masses from IGM data total neutrino mass <0.14 eV 2σ C.L.

TIGHTEST CONSTRAINT

OFF-THE-BEATEN-TRACK WDM: consistency with cold dark matter > 3.3 keV relics 2σ C.L. TIGHTEST CONSTRAINT

OFF-THE-BEATEN-TRACK IGRB: astro+DM modelling that probes thermal cross section TIGHTEST CONSTRAINT