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What you see depends on how you look…
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But how can you look,  
to “see” a (distant) magnetic field  

and reconstruct it, in 3D?
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Faraday Rotation Measures 
of ~40,000 quasars

Polarized synchrotron emission 
from WMAP ~2x40,000 pixels

Complementary!
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Jansson-Farrar strategy: 
constrain GMF by its effects



1st Question:   How should we 
model  the magnetic field?

No (accepted) theory for galactic magnetogenesis exists 

No obvious model (functional form) to use 

Infinite choice of models…   :-(
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 GMF modeling

Question: How should we model the magnetic field? 

Theoretical constraint: magnetic flux is conserved! 

Observational guidance: external galaxies
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    Coherent Field Model

■ Three large-scale components, each divergence-less 

■ Spiral disk (geometry from Brown+2007 ~ NE2001) 

■ Toroidal halo field 

■ Poloidal out-of-plane field:  

■ 21 free parameters: 
■ 10 field strengths 
■ thickness of the disk, scale height of halo, radial extent, …  
■ geometry of poloidal component 
■ striation parameter 10
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    “Striated” Component 
■ Average B is 0, but has a preferred orientation.  
■ Contributes to Polarized Synchrotron emission, but not to RMs. 
■ Produced by stretching or compressing a random field, or evacuating a bubble in 

a coherent field.  

■ Fitting only Polarized Synchrotron, ∃ degeneracy between striated field & rescaling  ncre. 
           ncre = α ncre ; B2

stri ≡ β B2
reg      ➯  emissivity increases by γ = α (1 + β);  

           JF12 fit to Q,U,RM data =>  γ = 2.8        
▪ striated field could be up to 1.4 x coherent field, or  

▪ need to rescale ncre by a factor up to 2.8, or a combination of both. 

▪ Fitting for the fully random field using total synchrotron intensity allows α and β to be 
separately determined. 11 8



Data used in JF12  

• Average data into 13.4 sq-deg pixels  
• 4 π steradians ≈ 40,000 square degrees  
• ~2000  data pixels for Q, U and RM pixels (shown above) 

• Measure the variance in each pixel
• variance maps (shown below, with most conservative masks)
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RMs Q U

not yet  
available



Mask

Sum 𝞆2  for Stokes Q, U and Rotation Measures;  minimize 

Smoothed data Model data

Variance measured from hi-resolution data

Mask*
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    II.  Minimize Figure-of-Merit  

Sum over 
pixels
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Input I:  RMs 
▪ 40403 extragalactic RMs  

▪  some are duplicate measurements of same source 
▪ Map to 8 10-4 sq-deg Healpix pixels; 50M   

▪ if multiple measurements, take the best quality ones  

▪ average.  => 38627 pixels with RMs 
▪ Remove outliers  

▪ for each pixel, measure mean & variance of neighbors  

▪ remove pixels > 3 sigma from local mean; iterate 

▪ 666 pixels removed 

▪ Bin to 2067 pixels (13.4 sq-deg) sky has 3072; some have no RM values 
▪ Measure variance from sub-pixels 
▪ Subtract foregrounds (GMIMs)  Wolleben et al (2010) 

▪ Future:  Fill in hole; use RM synthesis data to identify foregrounds.
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▪ WMAP 7-yr K-band, 22 GHz synchrotron maps 
▪ Planck:  better separation between synchrotron & dust emission; foreground removal 

▪  Bin to 2067 pixels (13.4 sq-deg) 
▪  Measure variance from sub-pixels 
▪  4 different masks, or no mask ➯fit changes < 1 𝛔  

▪Thermal electrons ne: 

▪ Cordes-Lasio NE2001; increased scale height 
▪ Cosmic ray electrons ncre :  
▪ GALPROP 2009;  rescaling improves fit 14

Input II:  Synchrotron Maps
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Input III:  Electron densities
▪GALPROP

▪rescaled GALPROP  

WMAP
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          above                  below   plane

±10 pc

±1 kpc

X-field

Disk-field

13

JF12 Coherent Field
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How well constrained are 
parameters?       VERY…

                     Uncertainty of CR deflections from  
JF12 parameter uncertainty 

Histogram of MCMC parameter values 
for 4 worst cases
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Unexpected discovery!   
Magnetic Field in the Galactic halo is a  

directed, outwardly-spreading helix

image by T. Sandstrom, NASA



RM Stokes Q Stokes U

JF12 also agrees well  UNMASKED 

Missing data

16



RM Stokes Q Stokes U

Sun et al.,2010 

Pshirkov et al.  
2011, BSS

Simulated data 

JF 2012

Observed data

Comparing GMF Models 
JF 12 fit is significantly better than other models
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for 6605 observables

= 1.096  per d.o.f.

= 1.67 per dof

= 2.66 per dof  



RM Stokes Q Stokes U

because of the Directed, helical, halo field 
(D. Khurana)

Missing data
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purely striated halo

JF12: directed + striated halo

Data



The Milky Way to an extragalactic radio observer

Milky Way analogues:  
NGC 891

 NGC 5775
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Caveats and Future 
• ncre and ne (from others in JF12) 

• Q,U:  
•  RMs  

• Functional form for B  

• Next iteration:  
• more theory input (dynamo, …) 

• fit ne at NYU 

• self-consistently constrain ncre and ne  

• try to constrain/understand origin of coherent field

plot by D. Khurana 
HUJI ncre courtesy D. Benyamin



Impact of GMF on CR propagation 
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CRs from source at the Galactic Center 
N. Awal (NYU) + GRF;  movies courtesy T. Sandstrom, NASA

22(E/Z = 1017.5 eV) 



CRs from source nearby  
(perspective view) 

N. Awal (NYU) + GRF;  movies courtesy T. Sandstrom, NASA

23shown for E/Z = 1017 eV 



CRs from source nearby (top view) 
N. Awal (NYU) + GRF;  movies courtesy T. Sandstrom, NASA

24shown for E/Z = 1017 eV 



UHECR deflections in the GMF
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E/Z = 100 EV (UHE proton)



UHECR deflections in the GMF
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E/Z = 10 EV (UHECR Carbon)



UHECR deflections in the GMF
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E/Z = 3 EV (UHECR iron)



Summary
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R.Jansson & GRF, Ap.J. 757, 14 (2012)   regular       
RJ & GRF, Ap.J.Lett. 761, L11 (2012)        random 
GRF   Comptes Rendu Physique (2014)   review 
GF w N. Awal & M. Sutherland, in prep     CR defs

• The Galactic magnetic field
• Halo: outwardly-spreading, directed helix
• Disk:  spiral structure confirmed 
• Striated component ~ 1.4 x coherent 
• Coherent component ~ few micro-gauss; random field usually bigger  

• (Jansson-Farrar approach works) 
• JF12 model is just 1st step.  New model coming soon; better: 

•  Thermal and relativistic electron distributions 
• Theoretical understanding of field structure 
• Foreground subtraction  

• Deflection and magnification in the GMF  has major impact on the 
anisotropies, diffusion of Galactic CRs and interpreting UHECR 
spectrum  



Backup slides

• Magnetic field modeling 

• Impact of GMF on UHECRs
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α-‐effect:	  Bφ → Br                       Differential	  rotation:	  Br → Bφ 

The	  mean-‐field	  (large-‐scale)	  αω-‐dynamo	  in	  the	  galactic	  disc

from A. Shukurov
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profile in z of toroidal field at solar circle
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▪ Disk 
▪ r > 5 kpc:  8 spiral arms, geometry as in NE2001  
▪ 3-5 kpc:  purely azimuthal “molecular ring” 
▪ B=0 for  r < 1 (not adequately constrained by data) and r > 20 kpc 

▪  Halo  
▪ purely toroidal (fit prefers this to spirals with arbitrary angles) 
▪ Different strength and scale height in N and S 
▪ Logistic function controls transitions, different parameters for each 

▪ Out-of-plane “X” field  
▪ divergenceless 
▪ need much slower radial fall-off than dipole

JF12 Coherent GMF Model



     Random Field Model
■ Two large-scale components: 

■ Spiral disk (same arm geometry as for regular field) 
■ Smooth, extended halo field  

■ 13 free parameters: 
■ Field strengths (8 arms, central disk, extended halo) 
■ Thickness of the disk; scale height & radial extent of halo 

■ Constrain with WMAP7 22 GHz total Intensity map 
■ Time saver:  Average over random field by computing synchrotron intensity with

12 32



                        with Deepak Khurana Michael Unger 
• Different functional forms for field components  

▪          ✔  Ferriere & Terral analytic X-fields (almost identical fit) 
• Shaviv-Benyamin 10 GeV electron distribution;  random field ~ ncrep 

• Better (more general; less regular) disk modeling.  Is total flux in disk = 0?  
• Incorporate more info from other galaxies, explore striated component in greater depth 

• Foreground modeling 
• Frisch et al. Local Bubble info: (\vec{B}, geometry, locally modeled ne & ncre   ; other known fg. 
• Use Planck polarized dust emission map to constrain local region to larger radii (+D. Finkbeiner)  

• Technical improvements  
• Better determination of electron densities ne & ncre 

• anisotropic diffusion (impacts predicted e± distribution because X-field => vertical escape route) 

• spatial variation of ncre spectral indices; correlation between B, ncre, & ne 

• Simultaneously fit I, Q, U, RM and key parameters of ne & ncre   

• Better tools:  adaptive observable calculator, state-of-art MCMC. 
• New data: complete RM sky, Planck Q,U,I, pulsars with good distances, more radio 

frequencies, RM synthesis!!! 
• Determine spatial dependence of coherence length  

  Improving on JF12  
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Benyamin-Shaviv ncre compared to NE2001 & JF12 arms
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Complex GMF =>  
non-trivial paths thru Galaxy =>  

multiple images & magnification/demagnification

Entrance Plane Positions of 
“successful” CRs – ex. @ 60 EeV

More examples…
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Magnification as a function of source direction

rigidity = E/Z = 1020 V
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Magnification as a function of rigidity

rigidity = 63 EV
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Magnification as a function of rigidity

rigidity = 40 EV
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Magnification as a function of rigidity

rigidity = 25 EV
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Magnification as a function of rigidity

rigidity = 16 EV
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Magnification as a function of rigidity

rigidity = 10 EV
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Magnification as a function of rigidity

rigidity = 6EV
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Magnification as a function of rigidity

rigidity = 4 EV
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Magnification as a function of rigidity

rigidity = 3 EV
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Magnification as a function of rigidity

rigidity = 2.5 EV
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Magnification as a function of rigidity

rigidity = 2 EV



UHECR deflection in the GMF 
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UHE:  E > ~ 5 1019 eV = 50 EeV    (CM energy > 10x LHC)

proton

Silicon

Carbon

Iron

depends on composition and GMF turbulent coherence lengths 
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Magnification can be strongly rigidity 
dependent: illustrated for 14 source positions

b > 0 
“TA-ish”

b < 0 
“Auger-ish”



Can structure in Auger spectrum be a 
GMF magnification effect?

48

Structure in spectrum an 
effect of GMF magnification?
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Arrival Directions from CGCG291-028 

rigidity = 1020 V
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Arrival Directions from CGCG291-028 

rigidity = 63 EV
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Arrival Directions from CGCG291-028 

rigidity = 40 EV
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Arrival Directions from CGCG291-028 

rigidity = 25 EV
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Arrival Directions from CGCG291-028 

rigidity = 16 EV
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Arrival Directions from CGCG291-028 

rigidity = 10 EV
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Arrival Directions from CGCG291-028 

rigidity = 6EV
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Arrival Directions from CGCG291-028 

rigidity = 4 EV
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Arrival Directions from CGCG291-028 

rigidity = 3 EV
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Arrival Directions from CGCG291-028 

rigidity = 2.5 EV
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Arrival Directions from CGCG291-028 

rigidity = 1018.3 V



60rigidity = 100 EV

Arrival Directions from Cen A 
nearest plausible source*  

*GRF+T. Piran on sabbatical year at NYU, 1999 
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Arrival Directions from Cen A 

rigidity = 63 EV
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Arrival Directions from Cen A 

rigidity = 40 EV
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Arrival Directions from Cen A 

rigidity = 25 EV
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Arrival Directions from Cen A 

rigidity = 16 EV
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Arrival Directions from Cen A 

rigidity = 10 EV
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Arrival Directions from Cen A 

rigidity = 6EV
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Arrival Directions from Cen A 

rigidity = 4 EV
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Arrival Directions from Cen A 

rigidity = 3 EV
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Arrival Directions from Cen A 

rigidity = 2.5 EV
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Arrival Directions from Cen A 

rigidity = 2 EV


