The impact of baryons on dark matter distribution in galaxies

Andrea V. Macciò

Max Planck Institute for Astronomy Heidelberg

MAX-PLANCK-GESELLSCHAFT

Trieste – April $14th$ 2015

How is Dark Matter distributed around galaxies?

- Direct detection: ρ, f(v) - Indirect detection: ρ^2

Results from pure gravity simulations

DM has a Universal Profile

DM universal profile

Results from pure gravity simulations

DM has a Universal Profile

$$
\frac{\rho_{\text{NFW}}(r)}{\rho_{-2}} = \frac{4}{(r/r_{-2})(1+r/r_{-2})^2}
$$

$$
\frac{\rho_{\text{EIN}}(r)}{\rho_{-2}} = \exp\left\{-\frac{2}{\alpha}\left[(r/r_{-2})^{\alpha} - 1\right]\right\}
$$

Why should you care?

Results from pure gravity simulations

DM velocity distribution is Maxwellian, with a possible excess at high vel. (Kuhlen+10)

Dark Matter distribution around galaxies

DM distribution with galaxy formation

DM distribution from pure gravity simulations

Pure Gravity (Nbody)

 ∇^2 Φ = $4πGa^2ρ$

Hydro-dynamical simulations

 $+\frac{3a}{\rho} \rho + \frac{1}{\rho} \nabla \cdot (\rho v) = 0$ $\frac{\partial u}{\partial t} = -\frac{1}{\sqrt{2}} \nabla \cdot \mathbf{v} - \frac{1}{\sqrt{2}} \nabla \cdot \mathbf{v}$ $\frac{\partial}{\partial}$ (a) + $\frac{1}{2}$ ∇ (a) = $-(a_1 + P)\left(\frac{1}{2}\nabla \cdot \mathbf{v} + 3\frac{\dot{a}}{a}\right)$ $\nabla^2 \Phi = 4\pi G a^2 \rho$ ∂ ∂ $\frac{1}{\sqrt{1-\nu}} = -\frac{1}{\sqrt{1-\nu}} \sqrt{1-\nu}$ ∂ ∂ ⎠ ⎝ *a* ∂ *a a* \overline{a} *t P v a a* $\lambda =$ *t a dt v a a v u u P a u t* $\frac{\rho}{\rho}$ + $\frac{3a}{\rho}$ ρ + $\frac{1}{\rho}$ $\nabla \cdot (\rho)$ ρ (*n*) + - V(ρ (*n*) = -(ρ !!
! \dot{a} *du* $=-\frac{P}{\sqrt{2}}$ ρ $\nabla \cdot v - \frac{\Lambda(u,\rho)}{2}$ ρ

Star formation and feedback in a nut shell

 $M_{\text{gas}} = 10^4 M_{\odot}$

We cannot simulate galaxy formation from first principles!

~100 pc

One of our particles $10^4 M_{\odot}$ 100 pc

Molecular cloud

Subgrid Physics

 $0.0 Gyr$

 $0.0 Gyr$

Are simulated galaxies realistic?

- Smoothed Particle Hydrodynamics (SPH) (Wadsley+06)
- New low temperature and Metal Cooling (Shen+ 2010)
- UV heating (Haardt & Madau 1996, 2011)
- Metal Diffusion (Wadsley+ 2010)
- Star Formation and SN feedback (Stinson+ 2006)
- *Chabrier IMF & Stellar feedback (Stinson, Brook, AM 2013)*
- *New SPH implementation (Keller+14, Stinson+2015)*

DM distribution

DM distribution

Erasing the Cusp

Pontzen & Governato 2011 Galaxy formation simulation AM+12

NON adiabatic expansion

MaGICC

Cored profiles needed by observations

A statistical sample of galaxies

The NIHAO project

Numerical Investigation (of) Hundred Astrophysical Objects

MPIA Heidelberg – Purple Mountain Observatory Nanjing

A statistical sample

Numerical Investigation *Hundred* **Astrophysical Objects**

NIHAO in numbers

- Gasoline 2.0 (with SPH fix)
- Planck Cosmology
- *100 high resolution (zoomed) galaxies*
- **106** particles in each halo
- $5 \times 10^9 5 \times 10^{12}$ M_o halo mass range
- **100 times better than ILLUSTRIS**
- **50 times better than EAGLE**
- **86 galaxies done** 14 running

Wang, Dutton, Stinson, Macciò et al. 2015 arXiv:1503.04818

Simulating realistic galaxies

Simulating realistic galaxies

DM with galaxy formation

Not too scale!!!

DM reaction to galaxy formation

The DM distribution $\mathbf 0$ α (1-2% r/R_{vir}) **NFW** -2 0.0001 0.001 0.01 $0.1\,$ 1e-005 M_{star}/M_{halo}

The DM distribution *evolution*

The DM distribution *evolution*

Core creation and core destruction

Core creation and core destruction

Why are cored destructed?

Halo Expansion

Halo Contraction

Tollet, Macciò+ 2015

Core creation and core destruction

Dark Matter velocity distribution

- Direct detection: ρ , f(v)
- Indirect detection: ρ^2

Butsky, Macciò+2015, arXiv 1503.04814

Global velocity distribution

Solar neighbors velocity distribution

Solar neighbors velocity distribution

- DM Haloes are rounder when galaxy formation is taken into account
- Reshuffling of DM particles orbits (especially in the center)
- Gaussian velocity distribution (central limit theorem)

Conclusions

DM distribution in galaxies is strongly affected by baryons

NO universal profiles: cores and cusps are created and destroyed depending on stellar-to-halo mass and star formation history

> DM velocity distribution is Gaussian and not Maxwellian

Take home message

Any comparisons of theoretical predictions with observational data can no longer rely on pure collisionless simulations, but must include the effects of visible matter.

Thank you