

THE HUNT FOR AXION-LIKE PARTICLES WITH GAMMA RAYS

Miguel A. Sánchez-Conde

[Oskar Klein Centre for Cosmoparticle Physics, Stockholm University]

Off-the-Beaten-Track DM and Astrophysical Probes of Fundamental Physics

ICTP Trieste, 13-17 April 2015

Photon/axion conversions strength tensor, F! its dual, E the electric field, and B the

- Axions proposed as a by-product of the Peccei-Quinn solution of the strong-CP might identify inside our formalism. Each of them are schematically represented by a line that goes from the source to the source to the source to the source to the Earth. In the Earth. In the source to the Earth. In the E $^\bullet$ Axions proposed as a by-product of the Peccei-Quinn solution of the strong-CP $^\bullet$ \sim Axions proposed as a by product of the important \sim mass proposed as a by product of the inverse relationships are inverse to the inverse of the inverse of the in each other. There are, however, other problem. There are, however, \mathcal{C}^{max} beccai-Quinn solution of the strong-CP $\overline{}$ cece commission of the strong en • Axions proposed as a by-product of the Peccei-Quinn solution of the strong-CP
	- $G \to \mathbb{R}$ and there is a roughly strip s, where the is a roughly strip source is a roughl • Axion-like particle (ALP): mass and coupling not related.
	- axion coupling strength is the coupling of the coupling strength, $\frac{1}{2}$ \sim Call be suitable dank matter candidre as axionlike particles (ALPs). An important and intriguing • Can be suitable dark matter candidates.
	- Given a domain of length s, where ℓ and ℓ an \bullet Expected to convert into photons (and vice-versa) in f constant magnetic field and plasma frequency, the proba- \bullet Expected to convert into photons (and vice-versa) in the presence of magnetic fields. field. In fact this effect represents the keystone in ongoing • Expected to convert into photons (and vice-versa) in the presence of magnetic fields. "2 <u>2 prose</u> B; (3)

Brobability of conversion (e.g. Paffelt & Stodolsky 88 a following of conversion (e.g. Kan end as Stoud Probability of conversion (e.g.Raffel Probability of conversion (e.g.Raffelt & Stodolsky 88, Mirizzi+07):
Expeditive in the mixing of the mixing o ' ð"CM þ "pl % "aÞ

$$
P_0 = (\Delta_{BS})^2 \frac{\sin^2(\Delta_{osc} s/2)}{(\Delta_{osc} s/2)^2}.
$$
 with
$$
\begin{cases} \Delta_B = \frac{B_t}{2M} \approx 1.7 \times 10^{-21} M_{11} B_{\text{mg cm}} \text{ cm}^{-1}, \\ \Delta_{osc} \approx (\Delta_{\text{CM}} + \Delta_{\text{pl}} - \Delta_a)^2 + 4\Delta_B^2, \end{cases}
$$

coupling constant.

Photon/axion conversions the main vehicle used in axion searches at present (ADMX, CAST…).
. Photon/axion conversions the main vehicle u $\frac{1}{2}$ in avion searches at present (ADMX CAST) Photon/axion conversions the main vehicle used in axion searches at present (ADMX, CAST...).

Some astrophysical environments **our formalism.** IGMFs. We will do it under the same consistent frame-

fulfill%the%mixing%requirements% $\begin{array}{ccc} \text{fulfill the mixing requirements} \end{array}$ \blacksquare to include the EBL in our formalism, in particular, in particula

considered under the same consistent framework. Photon to axion oscillations (or vice versa) are represented by a crooked line, while

Some astrophysical environments

\nfull the mixing requirements

\n
$$
M_{11} \geq 0.114 \text{ GeV (CAST limit)}
$$
\n
$$
M_{12} \geq 0.114 \text{ GeV (CAST limit)}
$$
\n
$$
S_{\text{pc}}
$$
\n
$$
S_{\text{pc}}
$$
\nsize region (pc)

"pl is the plasma term

 $M_{11}:$ coupling constant $M_{11} \geq 1$ B_G: magnetic field (G) spc:*size*region*(pc)* "CM is the vacuum Cotton-Mouton term, i.e. e=e ' 4:41 & 1013 G is the critical mag- M_{11} and M_{12} the inverse $(\mathcal{G}_{\text{ag}}/10^{11}\,\text{GeV})$ (EV ¹⁰⁺⁺ 10₁₎

² : (2)

!
|
|

 \overline{f}

constant magnetic field and plasma frequency, the proba-

Very diverse astrophysical mixing scenarios are possible...

Sanchez-Condé et al., 2009; Horns et al. 2012; Tavecchio et al. 2012]

Photon/ALP conversions in gamma-rays photons will convert into ALPs. Ioton/ALP conversions in gamma-r

Many different scenarios already explored in the literature:

- Mixing in the AGN (e.g. Hooper & Serpico 07, Tavecchio+12)
- IGMF mixing (e.g. De Angelis+07, 09, 11)
2. ACN: JCME mixing (e.g. MASC : es) ר
 1) and \mathcal{S}
- AGN+ IGMF mixing (e.g. MASC+09)
- AGN+ IGMF mixing (e.g. MASC+09)
• IGMF + Galactic mixing (e.g. Simet+08)
- AGN + cluster+ Galactic mixing (e.g. Meyer+14)

 R_{R} results from the CAST experiment $\frac{1}{2}$ give a value $\frac{1}{2}$ give a value $\frac{1}{2}$ give a value $\frac{1}{2}$ give a value of $\frac{1}{2}$ $\mathsf{rio.}$ and the maximum (For the same ALP properties, different E_{crit} are expected for each astrophysical scenario.

Intergalactic absorption of gamma-ray photons

Credit: Mazin & Raue

 $\overline{\mathbf{O}}$

Around TeV energies:

$$
\lambda \approx 1.24 \left(\frac{E}{1TeV}\right) \mu m
$$

Infrared/optical/UV background photons: *Extragalactic Background Light (EBL)*

 Flux attenuation: $\mathbf{F}_{\text{Earth}} = \mathbf{F}_{\text{source}} \mathbf{Exp}[\mathbf{-}\tau(\mathsf{E},\mathsf{z})]$ with τ = optical depth

Example:*for*a*source*at*redshift*0.5*and*0.5*TeV,*attenuation*~2*orders*of*magnitude!!

Optical depth from state-of-the-art EBL models

of the most refined EBL estimations in the our EBL estimation are shown with a shown with a shown with a shadow are a discussion on the ref. \sim 10⁻³. aregion with the dashed at above 24 *µm* shows the region where the region where it is no photometry in the region where is no photometry in the region where is no photometry in the region where is no photometry in the reg on their predictions for the (sub)TeV regime

Figure 17. *Ponting of γ -ray*

Hints of new Physics in y-ray data? (or why astrophysicists started to care aboutALPs)%

Some gamma-ray observations pose substantial challenges to the conventional astrophysical models, e.g.:

- **Lower opacity of the Universe to gamma rays** than expected (e.g. Aharonian+06, Albert+08, Acciari+11, De Angelis+09,11,13)
- **Too hard intrinsic spectrum of AGNs**
	- (e.g.*Albert+08,*Wagner+10,*Aleksic+11,Tanaka+13,*Furniss+13)*
- **Intrinsic spectrum deviates from a power-law**: pile-up problem (Dominguez, MASC+12; Furniss+13)
- **Extremely rapid and intense flares in FSRQs:** γγ absorption problem (Tavecchio+12).*
- **GeV spectral breaks and dips**

(Tanaka+13, Rubtsov & Troitsky 14, Mena & Razzaque 13)

Hints of new Physics in γ-ray data? SPECTRAL "HARDENING" at high τ

Some de-absorbed, *intrinsic* AGN spectra are best described by power laws with spectral indices smaller than 1.5 - too "hard" AGN spectra

the full range (0.5-500 GeV) are shown in the blue dashed and dotted lines, respectively,

Hints of new Physics in γ-ray data? MORE ANOMALIES

Hints of new Physic $\frac{1}{2}$ **_M MORE ANOWERS**

Unphysical behavior*of*AGN* **spectral index with redshift**

ALPs modify the spectrum of AGNs

PG%1553+113%

 $Z = 0.4$ In gal. cluster g_{11} = 2 $M = 10^{-9} eV$

ALPs modify the spectrum of AGNs

ALPs could explain these anomalies

Present gamma-ray observatories

E. range: 20 MeV - >1 TeV E. resolution: ~10% @ GeV $Fov: \approx 2.4$ sr Angular resolution: ~0.2º@10 GeV Effective area \sim m²

Fermi-LAT

E. range: 50 GeV - >10TeV E. resolution: ~20% $FOV: \approx 4$ deg. Angular resolution: $\approx 0.1^{\circ}$ Effective area $\sim 10^5$ m²

Typical Cherenkov telescope (IACT)

MAGIC

The ALP hunt with Fermi and IACTs

Fermi is more suitable for energies where the EBL is still not at work

(Ongoing) ALP search with Fermi: PERSEUS GALAXY CLUSTER

Focus on spectral irregularities

 \rightarrow no cosmological distances needed.

- PERSEUS galaxy cluster an optimum candidate.
	- Bright radio galaxy NGC 1275 in its center. Seen by Fermi and MAGIC.
	- Estimates of B field \sim 10-20 μ G in the center (Taylor+06, Aleksic+10, Aleksic+12). Morphology on large scales unknown.
	- Turbulent B field, follows electron density.
	- Electron density inferred from X-rays (Churazov+o3, Fabian+06).
- Cluster and Galactic magnetic fields considered.

Credit: R Jay GaBany http://www.cosmotography.com/images/ngc1275.html*

Example of expected irregularities Example of expected in egolding

Fermi%analysis ongoing

Analysis%

 100 MeV -- 500 GeV 5.7 years of data Makes uses of the new event data selection, "Pass 8"

Method%

Fit the spectrum of NGC 1275 to a log parabola with and w /o ALPs. Scan the ALP mass-coupling parameter space Explore hundreds of B field realizations *Likelihood**analysis* Monte Carlo simulations being performed to obtain null distribution. \rightarrow Constraints on the ALP parameter space

 \checkmark Joint analysis of several AGNs in galaxy clusters possible.

 \checkmark Work will be probably ready by ~ next Fall.

UCLA DM 2014, M. Meyer for the Fermi-LAT collaboration

An estimate of the Fermi sensitivity

Figure 3. Axion and ALP coupling to photons, gi^γ ≡ α Ciγ/(2πf^aⁱ), vs. its mass (adapted by Javier Adapted from Ringwald 2012

- Look for the maximum level of irregularity allowed by the data • Look for the maximum level of irregularity allowed by the da ver or in egolarity and wealty the at
- \rightarrow constraints on the ALP parameter space. \blacksquare pulutilities space.

Abramwski+13*

PKS 2155-304 spectrum and rociduale of the bost fit model residuals of the best-fit model

FIG. 7: H.E.S.S. exclusion limits on the ALP parameters *g*γ*^a* and *m*. The dashed region on the left is obtained considering ρ mixing in the IGMF with an optimistic scenario with a 1 nG field strength. The dashed region on the right is η Conctrainte are derived cenaratel Constraints are derived separately for IGMF and CMF

The future:

Cherenkov Telescope Array (CTA)

Low-energy section:

4 x 23 m tel. (LST) - Parabolic reflector - FOV: 4.5 degrees $-f/D: \sim 1.2$ energy threshold of \sim 20 GeV

Core-energy array:

23 x 12 m tel. (MST) Davies-Cotton reflector (or Schwarzschild-Couder) - FOV: 7-8 degrees $-f/D: \sim 1.4$

(one) possible configuration 100 M€ (2006 costs)

High-energy section:

32 x 5-6 m tel. (SST) Davies-Cotton reflector (or Schwarzschild-Couder) $-$ FOV: \sim 10 degrees $f/D: 1.2 - 1.5$ 10 km2 area at

multi-TeV energies

The search of ALPs with CTA \bm{M} it is \bm{C} . The $\bm{\Delta}$ two states $\bm{\Delta}$ IVICH: CHA

CTA will be the ideal instrument to look for boosts of \blacksquare gamma-ray photons at high optical depths.

just be a flux drop of at most # 30% [143], also washed out **Blazars in flaring states at z ~ 0.4** \blacksquare a high-energy boost may still be clearly detected, it would be clearly detected, it would be clearly detected, it would be considered, it would be considered, it would be considered, it would be considered, it would be co Most promising targets: /JJ&**,:'& \$+ 56789 +:*&2;/\$,+"* (+2 ?,((&2&"\$ +:*&2;/\$,+"* \$,-&* Blazars in flaring states at z ~ o.4

Predicted CTA sensitivity

Meyer+14; Meyer & Wood 15 (preliminary)

 \rightarrow Other search strategies proposed: 'Anisotropy test'

Idea: auto-correlation of AGN spectral indices with the Galactic magnetic field (Wouters & Brun 14)

Sensitivity from likelihood the 95% C.L. is *^g*γ*^a <* ²*.*⁹² [×] ¹⁰−¹¹ GeV−1. The variance of the level of exclusion over the ratio test with and w/o axions whole set of realizations is 2*.9* × 10−12 × **As experimed in Sec. 3, when considering in Sec. 3, when considering** $\mathbf{F} = \mathbf{F} \mathbf{F} \mathbf{F}$ **is the magnetic field of** $\mathbf{F} \mathbf{F}$

Nice complementarity!

Could reach the **ALP DM** region

Can test most of the low opacity hint parameter space

[Warning: the Fermi exclusion region should be considered just as a rough first estimate]

CONCLUDING%REMARKS

- Photon/ALP conversions may lead to very peculiar imprints in the spectra of astrophysical objects.
- Some **anomalies exist in gamma-ray data** that challenge an explanation in terms of "conventional physics".
- Photon/ALP **conversions could explain** these anomalies.
- ALP search currently ongoing by the Fermi LAT collaboration:
	- $-$ Spectral irregularities in NGC1275, the central AGN in Perseus.
	- Work in an advanced stage. Could be out by Fall.
- **H.E.S.S.** already looked for ALP-induced spectral irregularities:
	- No hint of ALPs in the data.
	- First constraints in the ALP paramenter space from γ -ray telescopes.
- CTA will be able to probe a larger region of the ALP parameter space.
- **Fermi and IACTs nicely complementary** each other and complementary/ competitive to other existent search techniques.

HANKS!

Miguel A. Sánchez-Conde

(sanchezconde@fysik.su.se)*

ADDITIONAL MATERIAL

γ-rays probe the extreme non-thermal Universe

THE GAMMA-RAY SKY above 1 GeV

5 years of Fermi LAT data

Alex Drlica-Wagner

on behalf of the Fermi LAT Collaboration

SKIPA

Different mechanisms producing γ-rays

ENERGY SOURCES

Explosions% Accretion% Rotating%Fields%

Many of these mechanisms will produce radiation at other, non y-ray, wavelengths

ACCELERATION MECHANISMS

Reconnection% Caustics% Other%Shocks%

γ-RAY EMISSION MECHANISMS

The complexity of the (Fermi) gamma-ray sky

Fermi-LAT performance

THE IMMINENT FUTURE: Pass 8 (a.k.a. improved LAT performance)

Impacts for ALP search:

- Increased energy range <==> explore new mass parameter space
- Increased effective area <==> increased flux sensitivity
- Better background rejection
- New event classes <==> check systematic effects in event selection

FIG. 2: Hillas diagram showing size and magnetic field strengths of astrophysical objects required to accelerate ultrahigh energy cosmic rays (figure from Ref. [17] with permission). The Hillas condition is closely related to the condition for the efficient conversion of gamma rays into ALPs [see Eq. (7)].

 $\mathsf{B}_\mathsf{G}\!\cdot\!\mathsf{s}_\mathsf{pc}$ also determines the Emax to \mathbb{R}^d pc sources can accelerate cosmic as Cygnus Cygnus A and Marine parameters a cygnus a and Marine parameters are parameters and the material para for the hot spots of Cygnus A are B^G # 0.15 × 10−³ E_{max} = 9.3 \cdot 10²⁰ \cdot B_G \cdot S_{pc} eV (**Hillas spots of Marine detection** in the TeV α and TeV α rays:

We observe cosmic rays up to 3∙10²⁰ eV \rightarrow B_c:s un to o 2 must exist¹ dition by more than one order of magnitude. -> B_G.s_{pc} up to 0.3 must exist!

ALP can alleviate the pile up problem

Domínguez, Sánchez-Conde and Prada, JCAP 11 (2011) 020

Working hypothesis:

PILE-UP!

- 1) Intrinsic spectra of AGNs are welldescribed by power laws.
- 2) M₁₁ has an optimistic value but still within experimental limits.
- 3) E_{crit} is within the energy range of present IACTs.
- (4) The EBL is well described by the Dominguez+11 EBL model.

Source modeling using multi-wavelength SSC fits available in the literature.

Neronov+10, Science

GALACTIC MAGNETIC FIELD MODELS

Figure 2. Maps of probability of conversion from ALPs to photons in the galactic magnetic fields for three different models, [65, 67, 68] from top to bottom, assuming $g_{\gamma a} = 5 \times 10^{-11} \text{ GeV}^{-1}$.

Intracluster magnetic fields

Observational evidence:

s er mi Gamma-ray Space Telescope

> - **Non-thermal (synchrotron) emission** of intracluster medium

- **Rotation measure** measurements
- Field strength between **0.1** and 10 µG
- **Extent: up to few Mpc**
- Magnetic field **follows thermal electron distribution** *ne(r)*

$$
\Delta \Psi = \Psi - \Psi_0 = \lambda^2(\text{RM})
$$

Rotation measure map with 5 GHz contours of galaxy NGC 4869 in the Coma cluster

Simulated B field (blue) and analytical profile (magenta) of the Coma cluster

$$
RM = 812 \int\limits_{0}^{L/\text{kpc}} n_e B_{||} d\ell \, (\text{rad m}^{-2})
$$

[Figure from Bonafede et al., 2010; see, e.g., Feretti et al., 2012, for a review]

M. Meyer

Figure 4: Same as in Fig. 3 but for the break assumed to happen at *E* = 100 GeV, for the extended sample of Fermi-LAT blazars described in the text. The breaks appear for distant objects only, for which $E_0 \sim 100$ GeV.

Rubtsov+14*

The Fermi Large Area Telescope

LAUNCHED IN JUNE 2008 Mission approved through 2016

Strip Tracker: convert γ->e⁺ereconstruct γ direction λ . hadron separation Bullet Cluster (Markevitch & Clowe, 2006)

73%

bscopic CsI Calorimeter: sure y energy **Image EM shower**

Fermi LAT Collaboration: ~400 Scientific Members, **Searching for Galactic** ntributions **K-Matter**

Substructure

Alex Drlica-Wagn

on behalf of the Fermi LAT Collaborat

EM v. hadron separation **Anti-Coincidence Detector:** Charged particle separation

Sky Survey: 2.5 sr field-of-view whole sky every 3 hours **Trigger and Filter:** Reduce data rate from ~10kHz to 300-500 HZ

Public%Data%Release:% All γ -ray data made public within 24 hours (usually less)

Leading RMCTs at present

MAGIC% The second generation

(Germany, Italy, Spain) 2003* 2 telescopes. 17 meters each

Canary Islands, Spain

Windhoek, Namibia

HESS%

VERITAS%

(USA & England) 2006*

4 telescopes 12 meters each

VERITAS (2008)

CANGAROO III