

THE HUNT FOR AXION-LIKE PARTICLES WITH GAMMA RAYS

Miguel A. Sánchez-Conde

[Oskar Klein Centre for Cosmoparticle Physics, Stockholm University]

Off-the-Beaten-Track DM and Astrophysical Probes of Fundamental Physics

ICTP Trieste, 13-17 April 2015

Photon/axion conversions

- Axions proposed as a by-product of the Peccei-Quinn solution of the strong-CP problem.
- Axion-like particle (ALP): mass and coupling not related.
- Can be suitable dark matter candidates.
- Expected to convert into photons (and vice-versa) in the presence of magnetic fields.

Probability of conversion (e.g.Raffelt & Stodolsky 88, Mirizzi+07):

$$P_{0} = (\Delta_{B}s)^{2} \frac{\sin^{2}(\Delta_{\rm osc}s/2)}{(\Delta_{\rm osc}s/2)^{2}} \text{, with } \begin{cases} \Delta_{B} = \frac{B_{t}}{2M} \simeq 1.7 \times 10^{-21} M_{11} B_{\rm mG} \text{ cm}^{-1}, \\ \Delta_{\rm osc}^{2} \simeq (\Delta_{\rm CM} + \Delta_{\rm pl} - \Delta_{a})^{2} + 4\Delta_{B}^{2}, \end{cases}$$

Photon/axion conversions the main vehicle used in axion searches at present (ADMX, CAST...).

Some astrophysical environments

fulfill the mixing requirements

$$\frac{15 \cdot B_G \cdot s_{pc}}{M_{11}} \ge 1$$

$$M_{11} \ge 0.114 \text{ GeV (CAST limit)}$$

M₁₁: coupling constant inverse (g_{ag}/10¹¹ GeV) B_G: magnetic field (G) s_{pc}: size region (pc)

Very diverse astrophysical mixing scenarios are possible...

Sanchez-Condé et al., 2009; Horns et al. 2012; Tavecchio et al. 2012]

Photon/ALP conversions in gamma-rays

Many different scenarios already explored in the literature:

- Mixing in the AGN (e.g. Hooper & Serpico 07, Tavecchio+12)
- IGMF mixing (e.g. De Angelis+07, 09, 11)
- AGN+ IGMF mixing (e.g. MASC+o9)
- IGMF + Galactic mixing (e.g. Simet+o8)
- AGN + cluster+ Galactic mixing (e.g. Meyer+14)

For the same ALP properties, different E_{crit} are expected for each astrophysical scenario.

Intergalactic absorption of gamma-ray photons

Credit: Mazin & Raue

0

Around TeV energies:

$$\lambda \approx 1.24 \left(\frac{E}{1TeV}\right) \mu m$$

Infrared/optical/UV background photons: Extragalactic Background Light (EBL)

Flux attenuation: $F_{Earth} = F_{Source} Exp[-\tau(E, z)]$ with τ = optical depth

Optical depth from state-of-the-art EBL models

The most refined EBL models remarkably agree on their predictions for the (sub)TeV regime

Domínguez+11

Hints of new Physics in γ-ray data? (or why astrophysicists started to care about ALPs)

Some gamma-ray observations pose substantial challenges to the conventional astrophysical models, e.g.:

- Lower opacity of the Universe to gamma rays than expected (e.g. Aharonian+o6, Albert+o8, Acciari+11, De Angelis+o9,11,13)
- Too hard intrinsic spectrum of AGNs
 - (e.g. Albert+o8, Wagner+10, Aleksic+11, Tanaka+13, Furniss+13)
- Intrinsic spectrum deviates from a power-law: pile-up problem (Dominguez, MASC+12; Furniss+13)
- Extremely rapid and intense flares in FSRQs: γγ absorption problem (Tavecchio+12).
- GeV spectral breaks and dips

(Tanaka+13, Rubtsov & Troitsky 14, Mena & Razzaque 13)

Hints of new Physics in γ-ray data? LOWER OPACITY TO GAMMA RAYS More gamma-ray photons than expected at high optical depths. Courtesy of M. Meyer AGN VHE spectra with $\tau \ge 1$ EBL corrected blazar spectra reveals a 2σ - 4σ evidence for overcorrection with EBL models 10EBL: Kneiske & Dole (2010), $\alpha = 1.0$ $p_t = 4.34$ EBL model: Franceschini et al. (2008) 10^{-1} Energy (TeV) Redshift zResidue Increasing number of AGNs = 0.05

z = 0.2

z = 0.5

Optical depth τ

Mean values Smoothed average

0.1

5

Horns & Meyer+12

 10^{1}

Energy (TeV)

 10^{-1}

at high optical

depths.

Hints of new Physics in γ -ray data? SPECTRAL "HARDENING" at high τ

Some de-absorbed, *intrinsic* AGN spectra are best described by power laws with spectral indices smaller than 1.5 – **too "hard" AGN spectra**

Hints of new Physics in γ-ray data? **MORE ANOMALIES**

UPTURN at high optical depths

Hints of new Physic MORE ANO

Unphysical behavior of AGN spectral index with redshift

ALPs modify the spectrum of AGNs

PG 1553+113

z = 0.4In gal. cluster $g_{11} = 2$ M= 10⁻⁹ eV

ALPs modify the spectrum of AGNs

ALPs could explain these anomalies

Present gamma-ray observatories

E. range: 20 MeV - >1 TeV E. resolution: ~10% @ GeV FoV: \approx 2.4 sr Angular resolution: ~0.2°@10 GeV Effective area ~ m²

Fermi-LAT

E. range: 50 GeV - >10TeV E. resolution: ~20% FOV: \approx 4 deg. Angular resolution: \approx 0.1° Effective area ~ 10⁵ m²

Typical Cherenkov telescope (IACT)

The ALP hunt with Fermi and IACTs

Fermi is more suitable for energies where the EBL is still not at work

(Ongoing) ALP search with Fermi: PERSEUS GALAXY CLUSTER

Focus on spectral irregularities

ightarrow no cosmological distances needed.

- PERSEUS galaxy cluster an optimum candidate.
 - Bright radio galaxy NGC 1275 in its center.
 Seen by Fermi and MAGIC.
 - Estimates of B field ~ 10-20 μG in the center (Taylor+o6, Aleksic+10, Aleksic+12).
 Morphology on large scales unknown.
 - Turbulent B field , follows electron density.
 - Electron density inferred from X-rays (Churazov+o₃, Fabian+o₆).
 - Cluster and Galactic magnetic fields considered.

Credit: R Jay GaBany http://www.cosmotography.com/images/ngc1275.html

Example of expected irregularities

	Parameter		Value	ie
,	Coupling		1E-11 / ලු_{වේ} M	lpc
	Mass		3 neV 0.01	79
	Central B Field		15 µ G	
	Max		10-11 (GeV
	Turbulence Scale		0.18 / k pc 3 ne	v
C	Min Turbulence Scale		^{9 / kpc} 15 m	IG
Coh 	Turbulence Power-Law Index	ו	_{-2.80} 10 kj	pc
	Maximum B Field Radius		- 2.8 560 k pc	0
B field radius			560 k	pc
Electron density			33	

Fermi analysis ongoing

Analysis

100 MeV -- 500 GeV 5.7 years of data Makes uses of the new event data selection, "Pass 8"

Method

Fit the spectrum of NGC 1275 to a log parabola with and w/o ALPs. Scan the ALP mass-coupling parameter space Explore hundreds of B field realizations *Likelihood* analysis Monte Carlo simulations being performed to obtain null distribution. → Constraints on the ALP parameter space

✓ Joint analysis of several AGNs in galaxy clusters possible.

✓ Work will be probably ready by ~ next Fall.

UCLA DM 2014, M. Meyer for the Fermi-LAT collaboration

An estimate of the Fermi sensitivity

Adapted from Ringwald 2012

- Look for the maximum level of irregularity allowed by the data
 - \rightarrow constraints on the ALP parameter space.

Abramwski+13

PKS 2155-304 spectrum and residuals of the best-fit model

Constraints are derived separately for IGMF and CMF

The future:

Cherenkov Telescope Array (CTA)

Low-energy section:

4 x 23 m tel. (LST) - Parabolic reflector - FOV: 4.5 degrees - f/D: ~1.2

energy threshold of ~20 GeV

Core-energy array:

23 x 12 m tel. (MST) Davies-Cotton reflector (or Schwarzschild-Couder) - FOV: 7-8 degrees - f/D: ~1.4 mCrab sensitivity in the 100 GeV-10 TeV domain

(one) possible configuration

High-energy section:

32 x 5-6 m tel. (SST) Davies-Cotton reflector (or Schwarzschild-Couder) - FOV: ~10 degrees - f/D: 1.2 - 1.5

The search of ALPs with CTA

CTA will be the ideal instrument to look for boosts of gamma-ray photons at high optical depths.

Most promising targets: Blazars in flaring states at z ~ 0.4

Predicted CTA sensitivity

ightarrow Other search strategies proposed: 'Anisotropy test'

Idea: auto-correlation of AGN spectral indices with the Galactic magnetic field (Wouters & Brun 14)

Sensitivity from likelihood ratio test with and w/o axions

Nice complementarity!

Could reach the ALP DM region

Can test most of the low opacity hint parameter space

[Warning: the Fermi exclusion region should be considered just as a rough first estimate]

CONCLUDING REMARKS

- Photon/ALP conversions may lead to very peculiar imprints in the spectra of astrophysical objects.
- Some **anomalies exist in gamma-ray data** that challenge an explanation in terms of "conventional physics".
- Photon/ALP conversions could explain these anomalies.
- ALP search currently ongoing by the **Fermi LAT** collaboration:
 - Spectral irregularities in NGC1275, the central AGN in Perseus.
 - Work in an advanced stage. Could be out by Fall.
- **H.E.S.S.** already looked for ALP-induced spectral irregularities:
 - No hint of ALPs in the data.
 - First constraints in the ALP paramenter space from γ-ray telescopes.
- **CTA** will be able to probe a larger region of the ALP parameter space.
- Fermi and IACTs nicely complementary each other and complementary/ competitive to other existent search techniques.

THANKS!

Miguel A. Sánchez-Conde

(sanchezconde@fysik.su.se)

ADDITIONAL MATERIAL

γ-rays probe the extreme non-thermal Universe

Alex Drlica-

on behalf of the Fermi LAT Collaboratio

THE GAMMA-RAY SKY above 1 GeV

5 years of Fermi LAT data

Different mechanisms producing y-rays

ENERGY SOURCES

Explosions

Rotating Fields

Many of these mechanisms will produce radiation at other, non γ-ray, wavelengths

ACCELERATION MECHANISMS

Reconnection

Caustics

Other Shocks

γ-RAY EMISSION MECHANISMS

The complexity of the (Fermi) gamma-ray sky

Fermi-LAT performance

THE IMMINENT FUTURE: *Pass 8* (a.k.a. improved LAT performance)

Impacts for ALP search:

- Increased energy range <==> explore new mass parameter space
- Increased effective area <==> increased flux sensitivity
- Better background rejection
- New event classes <==> check systematic effects in event selection

FIG. 2: Hillas diagram showing size and magnetic field strengths of astrophysical objects required to accelerate ultrahigh energy cosmic rays (figure from Ref. [17] with permission). The Hillas condition is closely related to the condition for the efficient conversion of gamma rays into ALPs [see Eq. (7)].

 $B_{G} \cdot s_{pc}$ also determines the Emax to which sources can accelerate cosmic rays: $E_{max} = 9.3 \cdot 10^{20} \cdot B_{G} \cdot s_{pc} eV$ (Hillas criterion)

We observe cosmic rays up to 3.10²⁰ eV -> B_G·s_{pc} up to 0.3 must exist!

ALP can alleviate the pile up problem

Domínguez, Sánchez-Conde and Prada, JCAP 11 (2011) 020

Working hypothesis:

PILE-UP!

- 1) Intrinsic spectra of AGNs are welldescribed by power laws.
- M₁₁ has an optimistic value but still within experimental limits.
- E_{crit} is within the energy range of present IACTs.
- The EBL is well described by the Dominguez+11 EBL model.

Source modeling using multi-wavelength SSC fits available in the literature.

Neronov+10, Science

GALACTIC MAGNETIC FIELD MODELS

Figure 2. Maps of probability of conversion from ALPs to photons in the galactic magnetic fields for three different models, [65, 67, 68] from top to bottom, assuming $g_{\gamma a} = 5 \times 10^{-11} \text{ GeV}^{-1}$.

Intracluster magnetic fields

• Observational evidence:

Gamma-ray Space Telescope

[Figure from Bonafede et al., 2010; see, e.g., Feretti et al., 2012, for a review]

M. Meyer

- Non-thermal (synchrotron) emission of intracluster medium
- Rotation measure measurements
- Field strength between 0.1 and 10 µG
- Extent: up to few Mpc
- Magnetic field follows thermal electron distribution n_e(r)

$$\Delta \Psi = \Psi - \Psi_0 = \lambda^2 (RM)$$

Rotation measure map with 5 GHz contours of galaxy NGC 4869 in the Coma cluster

Simulated B field (blue) and analytical profile (magenta) of the Coma cluster

$$RM = 812 \int_{0}^{L/kpc} n_e B_{||} \, d\ell \, (rad \, m^{-2})$$

Rubtsov+14

Figure 4: Same as in Fig. 3 but for the break assumed to happen at E = 100 GeV, for the extended sample of Fermi-LAT blazars described in the text. The breaks appear for distant objects only, for which $E_0 \sim 100$ GeV.

Biteau & Thompson 15

The Fermi Large Area Telescope

LAUNCHED IN JUNE 2008 Mission approved through 2016

itrip Tracker: vert γ->e⁺e⁻ reconstruct γ direction /. hadron separation

73%

oscopic Csl Calorimeter: sure γ energy image EM shower EM v. hadron separation Fermi LAT Collaboration: ~400 Scientific Members, NASA / DOE & Intergational Contributions Dark Matter

Alex Drlica-Wagne

or behalf of the Fermi AT Collaboration

Anti-Coincidence Detector: Charged particle separation

Sky Survey: 2.5 sr field-of-view whole sky every 3 hours **Trigger and Filter:** Reduce data rate from ~10kHz to 300-500 HZ

Public Data Release: All γ-ray data made public within 24 hours (usually less)

Leading A CTs at present

MAGIC

(Germany, Italy, Spain) 2003 2 telescopes 17 meters each

Canary Islands, Spain

VERITAS

(USA & England) 2006

4 telescopes 12 meters each Windhoek, Namibia

CANGAROO III

