Introduction to neutron-induced reactions and the R-matrix formalism

Frank Gunsing

CEA/Saclay
DSM / Irfu / SPhN
F-91911 Gif-sur-Yvette, France
gunsing@cea.fr

On leave at
CERN
CH-1211 Geneva 23
Switzerland

Neutron induced reactions

solid state

compound nucleus reactions

$$
\tau \sim 10^{-16}
$$

$$
E_{n}<10 \mathrm{MeV}
$$

direct reactions

1 nm	neutron wave length	10 fm
	neutron kinetic energy	
1 meV		10 MeV

Neutron-nucleus reactions

$$
\text { Reaction: } \quad \begin{aligned}
\cdot X+a & \rightarrow Y+b \\
& \cdot X(a, b) Y \\
& \cdot X(a, b)
\end{aligned}
$$

Examples of equivalent notations:

$$
\begin{aligned}
& { }^{10} \mathrm{~B}+{ }^{1} \mathrm{n} \rightarrow{ }^{7} \mathrm{Li}+{ }^{4} \mathrm{He} \\
& { }^{10} \mathrm{~B}+\mathrm{n} \rightarrow{ }^{7} \mathrm{Li}+\alpha \\
& { }^{10} \mathrm{~B}(\mathrm{n}, \alpha)
\end{aligned}
$$

$$
\begin{aligned}
& 238 U+n \rightarrow{ }^{239} U^{*} \\
& 238 U+n \rightarrow 239 U+\gamma \\
& 238 U(n, \gamma)
\end{aligned}
$$

Reaction cross section σ, expressed in barns, $1 \mathrm{~b}=10^{-28} \mathrm{~m}^{2}$
Neutron induced nuclear reactions:

- elastic scattering (n,n)
- inelastic scattering (n, n ')
- capture (n, γ)
- fission (n, f)
- particle emission (n, α), (n, p), ($n, x n$)

Total cross section $\sigma_{\text {tot }}:$ sum of all reactions
\qquad

Neutron-nucleus reactions

Reaction:

- $X+a \rightarrow Y+b$
- X(a,b)Y

Cross section:
function of the kinetic energy of the particle a $\sigma\left(E_{a}\right)=\iint \frac{d^{2} \sigma\left(E_{a}, E_{b}, \Omega\right)}{d E_{b} d \Omega} d E_{b} d \Omega$

Differential cross section:

function of the kinetic energy of the particle a
and function of the kinetic energy or the angle of the particle b

Double differential cross section:

function of the kinetic energy of the particle a
and function of the kinetic energy and the angle $\quad \frac{d^{2} \sigma\left(E_{a}, E_{b}, \Omega\right)}{d E_{b} d \Omega}$ of the particle b

Cross sections $\sigma_{T}, \sigma_{\gamma}, \sigma_{n}$ et σ_{f}

Neutron fluxes and cross sections

Neutron induced reaction cross sections

Neutron fluxes and cross sections

Neutron fluxes and cross sections

ulsed white sources
n_TOF, GELINA

Interference of $\sigma_{\text {potential }}$ and σ_{n}

Classical - Quantum Physics

Classical physics

- particles, Newton's law of motion
- electromagnetic waves, Maxwell's laws of electromagnetism

Quantum physics

- particles (momentum) and waves (wavelength) are different descriptions of the same thing. Related by Planck's constant h.

De Broglie wavelength: $\lambda=\frac{h}{p}$
From 1900, observations of electrons, photons behaving as particles or waves in different experiments (black body radiation, photo-electric effect, crystal diffraction).

Probability of a particle being at time t, having position x is related to a "wave function".

Probability (Born interpretation): $\psi^{*} \psi$
The wave function is a solution of the Schrödinger equation (postulate).

The hydrogen atom

Hydrogen atom

- quantum system of one proton, one electron
- the system can be in well-defined energy states (electron orbits).
- transitions between these states can be observed as electromagnetic radiation
- Observed: energy states: $\mathrm{E}_{\mathrm{n}}=-13.6 / n^{2} \mathrm{eV}$, with $\mathrm{n}=1$ the ground state
- wavelengths observed corresponding to transitions between these states ($\Delta \mathrm{E}=\mathrm{hc} / \lambda$)

The hydrogen atom - Bohr model

The hydrogen atom - Bohr model

The hydrogen atom - Bohr model

Discrete states of the hydrogen atom

Discrete states of the hydrogen atom

Hydrogen atom

- quantum system of one proton, one electron
- the system can be in well-defined energy states (electron orbits).
- transitions between these states can be observed as electromagnetic radiation
- energy states: $\mathrm{E}_{\mathrm{n}}=-13.6 / n^{2} \mathrm{eV}$, with $\mathrm{n}=1$ the ground state
- wavelengths observed corresponding to transitions between these states ($\Delta \mathrm{E}=\mathrm{hc} / \lambda$)

The Schrödinger equation

Time-independent, for a spinless, onedimensional particle:

Solutions: ψ, E
$\psi^{*} \psi \quad$ Interpreted as probabitliy

The Schrödinger equation

Time-independent. Equation for a spinless, onedimensional particle:

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x) \\
{\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(x)\right] \psi(x)=E \psi(x)}
\end{gathered}
$$

Quantum system: the infinite well

Solve Schrödinger equation, for a spinless, onedimensional particle

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E(x)
$$

Probability $\psi^{*} \psi$

Example: The infinite well

for a spinless, onedimensional particle:

$$
\begin{gathered}
V(x)=0 \text { for } 0<x<a \\
V(x)=\infty \text { elsewhere }
\end{gathered}
$$

Solution:

Quantum system: the infinite well

Solve Schrödinger equation, for a spinless, onedimensional particle

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E(x)
$$

Probability $\psi^{*} \psi$

Example: The infinite well

for a spinless, onedimensional particle:

$$
\begin{gathered}
V(x)=0 \text { for } 0<x<a \\
V(x)=\infty \text { elsewhere }
\end{gathered}
$$

Solution:

$$
\begin{aligned}
& \psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \\
& E_{n}=\frac{\hbar^{2} \pi^{2}}{2 m a^{2}} n^{2}
\end{aligned}
$$

Quantum system: the infinite well

Solve Schrödinger equation, for a spinless, onedimensional particle

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E(x)
$$

Probability $\psi^{*} \psi$

Example: The infinite well

for a spinless, onedimensional particle:

$$
\begin{gathered}
V(x)=0 \text { for } 0<x<a \\
V(x)=\infty \text { elsewhere }
\end{gathered}
$$

Solution:

$$
\begin{aligned}
& \psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \\
& E_{n}=\frac{\hbar^{2} \pi^{2}}{2 m a^{2}} n^{2}
\end{aligned}
$$

Quantum system: the finite well

Solve Schrödinger equation in two regions:

- inside and outside the well
- normalize solutions to match value and derivative and borders $x=0$ and $x=a$

Now the wave function exists also outside the well at $x<0$ and $x>a$

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x) \\
& 0<x<a \quad-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V_{0} \psi(x)=E \psi(x) \\
& x<0, x>a \\
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}=E \psi(x)
\end{aligned}
$$

Quantum system: the finite well

Solve Schrödinger equation in two regions:

- inside and outside the well
- normalize solutions to match value and derivative and borders $x=0$ and $x=a$

Now the wave function exists also outside the well at $x<0$ and $x>a$

Quantum system: the finite well

Solve Schrödinger equation in two regions:

- inside and outside the well
- normalize solutions to match value and derivative and borders $x=0$ and $x=a$

Now the wave function exists also outside the well at $x<0$ and $x>a$

In general, a generic state can be written as a linear expansion of it eigenstates:

$$
\psi(x)=\sum_{k} c_{k} \psi_{k}(x)
$$

Quantum system: the potential barrier

Solve Schrödinger equation in three regions:

- free travelling particle of energy E
- inside and outside the well
- normalize solutions to match value and derivative and borders $x=0$ and $x=a$
- transmission and reflection

Quantum system: the potential barrier

Solve Schrödinger equation in three regions:

- free travelling particle of energy E
- inside and outside the well
- normalize solutions to match value and derivative and borders $x=0$ and $x=a$
- transmission and reflection

Quantum system: the potential barrier

Solve Schrödinger equation in three regions:

- free travelling particle of energy E
- inside and outside the well
- normalize solutions to match value and derivative and borders $x=0$ and $x=a$
- transmission and reflection

$$
\begin{array}{r}
\psi_{1}(x)=A e^{i k(x) x}+B e^{-i k(x) x} \\
\psi_{2}(x)=C e^{i k(x) x}+D e^{-i k(x) x} \\
\psi_{3}(x)=E e^{i k(x) x}+F e^{-i k(x) x} \\
k(x)=\sqrt{2 m\left(E-V_{0}\right) / \hbar^{2}}
\end{array}
$$

Quantum system: the potential barrier

Solve Schrödinger equation in three regions:

- free travelling particle of energy E
- inside and outside the well
- normalize solutions to match value and derivative and borders $x=0$ and $x=a$
- transmission and reflection

$$
\begin{array}{r}
\psi_{1}(x)=A e^{i k(x) x}+B e^{-i k(x) x} \\
\psi_{2}(x)=C e^{i k(x) x}+D e^{-i k(x) x} \\
\psi_{3}(x)=E e^{i k(x) x}+F e^{-i k(x) x} \\
k(x)=\sqrt{2 m\left(E-V_{0}\right) / \hbar^{2}}
\end{array}
$$

Quantum system: the potential barrier

Solve Schrödinger equation in three regions:

- free travelling particle of energy E
- inside and outside the well
- normalize solutions to match value and derivative and borders $x=0$ and $x=a$
- transmission and reflection

$$
\begin{array}{r}
\psi_{1}(x)=A e^{i k(x) x}+B e^{-i k(x) x} \\
\psi_{2}(x)=C e^{i k(x) x}+D e^{-i k(x) x} \\
\psi_{3}(x)=E e^{i k(x) x}+F e^{-i k(x) x} \\
k(x)=\sqrt{2 m\left(E-V_{0}\right) / \hbar^{2}} \\
j=\frac{\hbar}{2 m i}\left(\psi^{*} \nabla \psi-\nabla \psi^{*} \psi\right)
\end{array}
$$

transmission $T=|F|^{2} /|A|^{2}=j_{\text {trans }} / j_{\text {inc }}$

Quantum systems

Other useful excercises in 1D:

- barrier potential
- finite potential well
- harmonic oscillator

More complicated in 3D, V=V(r), more particles, degeneracy:

- cartesian well
- spherical well
- harmonic oscillator
- realistic potentials (Wood-Saxon),
\rightarrow No analytical solution possible, numerical solutions

Apply to real quantum systems:
atoms (hydrogen) but also to nuclei.

Quantum systems

Other useful excercises in 1D:

- barrier potential
- finite potential well
- harmonic oscillator

More complicated in 3D, V=V(r), degeneracy:

- cartesian well
- spherical well
- harmonic oscillator
- realistic potentials (Wood-Saxon),
\rightarrow No analytical solution possible, numerical solutions

Apply to real quantum systems:
atoms (hydrogen) but also to nuclei.
A nucleus is a quantum system of nucleons (protons and neutrons), bound together by the strong force.

The nucleus as a quantum system, shell model

${ }_{8}^{16} \mathrm{O}$

${ }_{8}^{17} \mathrm{O}$

The nucleus as a quantum system
shell model representation: configuration of nucleons in their potential
level scheme representation:
excited states of a nucleus
(shell model and other states)

The nucleus as a quantum system
shell model representation: configuration of nucleons in their potential
level scheme representation:
excited states of a nucleus
(shell model and other states)

The nucleus as a quantum system
shell model representation: configuration of nucleons in their potential
level scheme representation:
excited states of a nucleus
(shell model and other states)

The nucleus as a quantum system

shell model representation: configuration of nucleons in their potential
level scheme representation:
excited states of a nucleus
(shell model and other states)

The nucleus as a quantum system

Level schemes from ENSDF

 www.nndc.bnl.gov/ensdf

The nucleus as a quantum system

The nucleus as a quantum system

The nucleus as a quantum system

Nuclear levels

Compound neutron-nucleus reactions

Compound neutron-nucleus reactions

Chart of nuclides

cea

Chart of nuclides

Neutron separation energy

Fission of ${ }^{235} U+n$ et ${ }^{238} U+n$

excitation
energy

Decay of a nuclear state

state with a life time τ :

$$
\Psi(t)=\Psi_{0} e^{-i E_{0} t / h} e^{-t / 2 \tau}
$$

definition (Heisenberg):

$$
\Gamma=\frac{\mathrm{h}}{\tau}
$$

Fourier transform gives energy profile:

$$
I(E)=\frac{\Gamma / 2 \pi}{\left(E-E_{0}\right)^{2}+\Gamma^{2} / 4}
$$

\qquad

Neutron-nucleus reactions

$$
\begin{gathered}
\sqrt{N} \longrightarrow \\
j_{\text {inc }}=\frac{\hbar}{2 m i}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right) \\
\text { plain wave } \\
2 m
\end{gathered}
$$

W
scattered radial wave $j_{\text {out }}$

Conservation of probability density: $\quad \sigma(\Omega)=\frac{r^{2} j_{\text {out }}(r, \Omega)}{j_{\text {inc }}}$
Solve Schrödinger equation of system to get cross sections.
Shape of wave functions of in- and outgoing particles are known, potential is unknown. Two approaches:

- calculate potential (optical model calculations, smooth cross section)
- use eigenstates (R-matrix, resonances)

R-matrix formalism

partial incoming wave functions: $\mathcal{I}_{\mathcal{C}}$ partial outgoing wave functions: $\mathcal{O}_{\mathcal{C}^{\prime}}$ related by collision matrix: $\quad U_{c c^{\prime}}$
cross section:

$$
\sigma_{c c^{\prime}}=\pi \lambda_{c}^{2}\left|\delta_{c^{\prime} c}-U_{c^{\prime} c}\right|^{2}
$$

Find the wave functions

$$
\begin{array}{cl}
r>a_{c} & \text { external region } \\
r<a_{c} & \text { internal region } \\
r=a_{c} \quad & \text { match value and derivate of } \Psi \\
{\left[\frac{d^{2}}{d r^{2}}-\frac{\ell(\ell+1)}{r^{2}}-\frac{2 m_{c}}{\hbar^{2}}(V-E)\right] r R(r)=0}
\end{array}
$$

External region: easy, solve Schrödinger equation central force, separate radial and angular parts.

$$
\psi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)
$$

solution: solve Schrödinger equation of relative motion:

- Coulomb functions
- special case of neutron particles (neutrons): fonctions de Bessel

Internal region: very difficult, Schrödinger equation cannot be solved directly solution: expand the wave function as a linear combination of its eigenstates. using the R-matrix:

$$
R_{c c^{\prime}}=\sum_{\lambda} \frac{\gamma_{\lambda c} \gamma \lambda c^{\prime}}{E_{\lambda}-E}
$$

The R-matrix formalism

The R-matrix formalism

The R-matrix formalism

The R-matrix formalism

The wave function of the system is a superposition of incoming and outgoing waves:

$$
\Psi=\sum_{c} y_{c} \mathcal{I}_{c}+\sum_{c^{\prime}} x_{c^{\prime}} \mathcal{O}_{c}^{\prime}
$$

Incoming and outgoing
wavefunctions have form:

$$
\begin{aligned}
& \mathcal{I}_{c}=I_{c} r^{-1} \varphi_{c} i^{\ell} Y_{m_{\ell}}^{\ell}(\theta, \phi) / \sqrt{v_{c}} \\
& \mathcal{O}_{c}=O_{c} r^{-1} \varphi_{c} i^{\ell} Y_{m_{\ell}}^{\ell}(\theta, \phi) / \sqrt{v_{c}}
\end{aligned}
$$

The physical interaction is included in the collision matrix \mathbf{U} :

$$
x_{c^{\prime}} \equiv-\sum_{c} U_{c^{\prime} c} y_{c}
$$

The wave function depends on

$$
\begin{array}{r}
\Psi=\Psi\left(R_{c c^{\prime}}\right) \\
R_{c c^{\prime}}=\sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c^{\prime}}}{E_{\lambda}-E}
\end{array}
$$ the R-matrix, which depends on the widths and levels of the eigenstates.

The R-matrix formalism

The relation between the R-matrix and the collision matrix:

$$
\begin{array}{r}
\mathbf{U}=\boldsymbol{\Omega} \mathbf{P}^{1 / 2}[\mathbf{1}-\mathbf{R}(\mathbf{L}-\mathbf{B})]^{-1}\left[\mathbf{1}-\mathbf{R}\left(\mathbf{L}^{*}-\mathbf{B}\right)\right] \mathbf{P}^{-1 / 2} \boldsymbol{\Omega} \\
\text { with: } L_{c}=S_{c}+i P_{c}=\left(\frac{\rho}{O_{c}} \frac{d O_{c}}{d \rho}\right)_{r=a_{c}}
\end{array}
$$

The relation between the collision matrix and cross sections:
channel to one other channel:

$$
\begin{aligned}
& \sigma_{c c^{\prime}}=\pi \lambda_{c}^{2}\left|\delta_{c^{\prime} c}-U_{c^{\prime} c}\right|^{2} \\
& \sigma_{c r}=\pi \lambda_{c}^{2}\left(1-\left|U_{c c}\right|^{2}\right) \\
& \sigma_{c c}=\pi \lambda_{c}^{2}\left|1-U_{c c}\right|^{2} \\
& \sigma_{c, T}=\sigma_{c}=2 \pi \lambda_{c}^{2}\left(1-\operatorname{Re} U_{c c}\right)
\end{aligned}
$$

channel to same channel:
channel to any channel (total):

The R-matrix formalism

The R-matrix formalism

Neutron energy for $\mathrm{A}=238(\mathrm{eV})$

The R-matrix formalism

The Breit-Wigner Single Level approximation: total cross section:

$$
\sigma_{c}=\pi \lambda_{c}^{2} g_{c}\left(4 \sin ^{2} \phi_{c}+\frac{\Gamma_{\lambda} \Gamma_{\lambda c} \cos 2 \phi_{c}+2\left(E-E_{\lambda}-\Delta_{\lambda}\right) \Gamma_{\lambda c} \sin 2 \phi_{c}}{\left(E-E_{\lambda}-\Delta_{\lambda}\right)^{2}+\Gamma_{\lambda}^{2} / 4}\right)
$$

neutron channel: $c=n$
only capture, scattering, fission: $\Gamma_{\lambda}=\Gamma=\Gamma_{n}+\Gamma_{\gamma}+\Gamma_{f}$
other approximations: $\ell=0 \quad \cos \phi_{c}=1 \quad \sin \phi_{c}=\rho=k a_{c} \quad \Delta_{\lambda}=0$
total cross section:

The R-matrix formalism

The Reich-Moore approximation:

Use the fact that there are many photon channels, with Gaussian distributed amplitudes with zero mean:

$$
<\gamma_{\lambda c} \gamma_{\mu c}>=\gamma_{\lambda c}^{2} \delta_{\lambda \mu}
$$

The sum over the amplitudes of the photon channels becomes then:

$$
\sum_{c \in \text { photon }} \gamma_{\lambda c} \gamma_{\mu c}=\sum_{c \in \text { photon }} \gamma_{\lambda c}^{2} \delta_{\lambda \mu}=\Gamma_{\lambda \gamma} \delta_{\lambda \mu}
$$

Then photon channels can be eliminated in the R-matrix:

$$
R_{c c^{\prime}}=\sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c^{\prime}}}{E_{\lambda}-E-i \Gamma_{\lambda \gamma} / 2} \quad c \notin \text { photon }
$$

Measured reaction yield

Measured reaction yield

Measured reaction yield

Measured reaction yield

Measured quantities for resolved resonances

- Experimental quantities are not cross sections but reaction yields and transmission factors
reaction yield: $\quad Y\left(E_{n}\right)=\mu\left(E_{n}\right)\left(1-e^{-n \sigma_{T}\left(E_{n}\right)}\right) \cdot \frac{\sigma_{\gamma}\left(E_{n}\right)}{\sigma_{T}\left(E_{n}\right)}$
transmission: $\quad T\left(E_{n}\right)=e^{-n \sigma_{T}\left(E_{n}\right)}$
- Cross sections are functions of the resonance parameters
cross section: $\quad \sigma_{c r}=\pi \lambda_{c}^{2} g_{c}\left(1-\left|U_{c c}\right|^{2}\right)$

$$
\sigma=\sigma\left(\left\{E_{r}, J^{\pi}, \Gamma, \Gamma_{r}\right\}, \ldots\right)
$$

Measured quantities for unresolved resonances

- Experimental quantities are average yields and average transmission factors
reaction yield: $\quad\langle Y\rangle=\left\langle\mu\left(1-e^{-n \sigma_{T}}\right) \frac{\sigma_{\gamma}}{\sigma_{T}}\right\rangle$
transmission: $\quad\langle T\rangle=\left\langle e^{-n \sigma}\right\rangle=e^{-n\langle\sigma\rangle} \cdot\left\langle e^{-n(\sigma-\langle\sigma\rangle)}\right\rangle$

Measured quantities for unresolved resonances

- Experimental quantities are average yields and average transmission factors
reaction yield: $\quad\langle Y\rangle=\left\langle\mu\left(1-e^{-n \sigma_{T}}\right) \frac{\sigma_{\gamma}}{\sigma_{T}}\right\rangle=f_{r} \times n \times<\sigma_{\gamma}>$
transmission:

$$
\begin{array}{r}
\langle T\rangle=\left\langle e^{-n \sigma_{T}}\right\rangle=e^{-n\left\langle\sigma_{T}\right\rangle} \cdot\left\langle e^{-n\left(\sigma_{T}-\left\langle\sigma_{T}\right\rangle\right)}\right\rangle= \\
f_{T} \times e^{-n\left\langle\sigma_{T}\right\rangle}
\end{array}
$$

Measured quantities for unresolved resonances

- Experimental quantities are average yields and average transmission factors
reaction yield: $\quad\langle Y\rangle=\left\langle\mu\left(1-e^{-n \sigma_{T}}\right) \frac{\sigma_{\gamma}}{\sigma_{T}}\right\rangle=f_{r} \times n \times<\sigma_{\gamma}>$
transmission: $\quad\langle T\rangle=\left\langle e^{-n \sigma_{T}}\right\rangle=e^{-n\left\langle\sigma_{T}\right\rangle} \cdot\left\langle e^{-n\left(\sigma_{T}-\left\langle\sigma_{T}\right\rangle\right)}\right\rangle=$
- change of parameters describing the cross section

$$
f_{T} \times e^{-n\left\langle\sigma_{T}\right\rangle}
$$

resolved unresolved parameters

$$
\begin{aligned}
E, J^{\pi} & \rightarrow \rho_{\ell} \quad \text { or } \quad D_{\ell} \\
\Gamma_{\gamma} & \rightarrow\left\langle\Gamma_{\gamma}\right\rangle \\
g \Gamma_{n}^{\ell} & \rightarrow\left\langle g \Gamma_{n}^{\ell}\right\rangle=(2 \ell+1) S_{\ell} D_{\ell}
\end{aligned}
$$

Measured quantities for unresolved resonances

- Experimental quantities are average yields and average transmission factors
reaction yield: $\quad\langle Y\rangle=\left\langle\mu\left(1-e^{-n \sigma_{T}}\right) \frac{\sigma_{\gamma}}{\sigma_{T}}\right\rangle=f_{r} \times n \times<\sigma_{\gamma}>$
transmission: $\quad\langle T\rangle=\left\langle e^{-n \sigma_{T}}\right\rangle=e^{-n\left\langle\sigma_{T}\right\rangle} \cdot\left\langle e^{-n\left(\sigma_{T}-\left\langle\sigma_{T}\right\rangle\right)}\right\rangle=$
- change of parameters describing the cross section $f_{T} \times e^{-n\left\langle\sigma_{T}\right\rangle}$
resolved unresolved parameters

$$
\begin{array}{rlr}
E, J^{\pi} & \rightarrow \rho_{\ell} \text { or } D_{\ell} \\
\Gamma_{\gamma} & \rightarrow\left\langle\Gamma_{\gamma}\right\rangle & \\
g \Gamma_{n}^{\ell} & \rightarrow\left\langle g \Gamma_{n}^{\ell}\right\rangle=(2 \ell+1) S_{\ell} D_{\ell} & \begin{array}{l}
\text { Neutron strength } \\
\text { function: } S_{\ell}
\end{array}
\end{array}
$$

resolved/unresolved resonances

$\xrightarrow[\text { resolved/unresolved resonances }]{\text { neutron energy }}$

resolved/unresolved resonances

Average cross sections

The relation between the energy averaged collision matrix and energy averaged cross sections:
average scattering:
shape elastic (potential)
compound elastic

$$
\begin{aligned}
& \overline{\sigma_{c c}}=\pi \lambda_{c}^{2} g_{c} \overline{\left|1-U_{c c}\right|^{2}} \\
& \overline{\sigma_{c c}^{\mathrm{se}}}=\pi \lambda_{c}^{2} g_{c}\left|1-\overline{U_{c c}}\right|^{2} \\
& \overline{\sigma_{c c}^{\mathrm{ce}}}=\pi \lambda_{c}^{2} g_{c}\left(\overline{\left|U_{c c}\right|^{2}}-\left|\overline{U_{c c}}\right|^{2}\right)
\end{aligned}
$$

average any reaction

$$
\overline{\sigma_{c r}}=\pi \lambda_{c}^{2} g_{c}\left(1-\overline{\left|U_{c c}\right|^{2}}\right)
$$

average total

$$
\overline{\sigma_{c, T}}=2 \pi \lambda_{c}^{2} g_{c}\left(1-\operatorname{Re} \overline{U_{c c}}\right)
$$

average single reaction
average compound nucleus formation

$$
\overline{\sigma_{c c^{\prime}}}=\pi \lambda_{c}^{2} g_{c} \overline{\left|\delta_{c c^{\prime}}-U_{c c^{\prime}}\right|^{2}}
$$

$$
\overline{\sigma_{c}}=\pi \lambda_{c}^{2} g_{c}\left(1-\left|\overline{U_{c c}}\right|^{2}\right)
$$

Average cross sections

- From optical model calculations one can calculate $\overline{U_{c c}}$ but not $\overline{\left|U_{c c}\right|^{2}}$
- Therefore, only $\overline{\sigma_{c, T}}, \quad \overline{\sigma_{c c}^{\mathrm{se}}}, \quad \overline{\sigma_{c}}$ can be calculated, of which only the total average cross section can be compared directly with measurements.
- In OMP one uses transmission coefficients $\quad T_{c}=1-\left|\overline{U_{c c}}\right|^{2}$
- Average single reaction cross section (Hauser-Feshbach):

$$
\overline{\sigma_{c c^{\prime}}}=\overline{\sigma_{c c}^{\mathrm{se}}} \delta_{c c^{\prime}}+\pi \lambda_{c}^{2} g_{c} \frac{T_{c} T_{c^{\prime}}}{\Sigma T_{i}} W_{c c^{\prime}}
$$

related to average parameters: $T_{c}=2 \pi \overline{\Gamma_{c}} / D$

$$
\text { width fluctuations: } \quad W_{c c^{\prime}}=\overline{\left(\frac{\Gamma_{c} \Gamma_{c^{\prime}}}{\Gamma}\right)} \overline{\overline{\Gamma_{c}} \overline{\overline{\Gamma_{c^{\prime}}}}}
$$

Cross sections $\sigma_{T}, \sigma_{\gamma}, \sigma_{n}$ et σ_{f}

Cross sections $\sigma_{T}, \sigma_{\gamma}, \sigma_{n}$ et σ_{f}

Cross sections $\sigma_{T}, \sigma_{\gamma}, \sigma_{n}$ et σ_{f}

Compound neutron-nucleus reactions

Orbital momentum

- orbtial momentum of incoming neutron relative to nucleus: ℓ
- Resonance spin and parity:

$$
\begin{aligned}
& \mathbf{J}=\mathbf{I}+\mathbf{1} / \mathbf{2}+\ell \\
& \pi=\pi_{i} \times(-1)^{\ell}
\end{aligned}
$$

- partial waves:

$$
\begin{array}{cc}
\text { s-wave } & \ell=0 \\
\text { p-wave } & \ell=1 \\
\text { d-wave } & \ell=2 \\
\text { f-wave } & \ell=3
\end{array}
$$

- All level density models reproduce the low-lying levels and D_{0} at S_{n}

Compound nucleus reactions

(ommound

Compound nucleus reactions

Compound nucleus reactions

Level densities: the level spacing D_{0}

- The level spacing D_{0} at the neutron binding energy is a crucial input parameter for calibrating level density models. Level density: $\rho=1 / D$.
- D_{0} is the spacing between levels excited by neutrons on nuclei bringing in zero orbital momentum (s-wave resonances).
- Spacings from higher orbital momentum are equally important, but in general much more affected by missing levels.
- Problems concerning the determination of D_{0} :
- spin and parity assignment of levels
- corrections for missing levels (which are not observed experimentally)

Level spacing D_{0}

Level spacing D_{0}

Level spacing D_{0}

Level density basics

Level density definition:

$$
\rho(U, J, \pi)=\frac{\partial N(U, J, \pi)}{\partial E}
$$

Simplify, use factorization:

$$
\rho(U, J, \pi)=\rho_{U}(U) \times \rho_{J}(J) \times \rho_{\pi}(\pi)
$$

- parity distribution:

$$
\rho\left(\pi^{+}\right)=\rho\left(\pi^{-}\right)=\frac{1}{2}
$$

- spin distribution:

$$
\rho(J)=\exp \left(-\frac{J^{2}}{2 \sigma_{c}^{2}}\right)-\exp \left(-\frac{(J+1)^{2}}{2 \sigma_{c}^{2}}\right)
$$

- energy distribution: (constant temperature)

$$
\rho(U)=\frac{1}{T} \exp \left(-\frac{U-U_{0}}{T}\right)
$$

Many more sophisitcated models, especially for $\rho(U)$.

Level density by counting levels: staircase plot

Level density by counting levels: missing levels

${ }^{197} \mathbf{A u}+\mathbf{n}$

Level density from resonance positions

- Other information needed to estimate the number of missing levels.
- Use the properties of the statistical model of the nucleus to find missing levels. Works for medium and heavy nuclei.
\qquad

What is the statistical model for a nucleus?

- Neutron resonances correspond to states in a compound nucleus, which is a nucleus in a highly excited state above the neutron binding energy.
- The compound nucleus corresponds to a very complex particle-hole configuration. \rightarrow Gaussian Orthogonal Ensemble (GOE)
- The transition probability between two levels is related to the matrix elements of the interaction between two levels.
- Matrix elements (amplitudes γ) are Gaussian random variables with zero mean.

Observables are widths $\Gamma \sim \gamma^{2}$.

The statistical model

The nucleus at energies around S_{n} can be described by the
Gaussian Orthogonal Ensemble (GOE)
The matrix elements governing the nuclear transitions are random variables with a Gaussian distribution with zero mean.

- Consequences:
- The partial widths have a Porter-Thomas distribution.
- The spacing of levels with the same $J \pi$ have approximately a Wigner distribution.

Chi-square distribution

- If v random variables x_{i} have independent Gaussian distributions, $z=\Sigma x_{i}^{2}$ has a chi-square distribution with v degrees of freedom.

Chi-square distribution

- If v random variables x_{i} have independent Gaussian distributions, $z=\Sigma x_{i}^{2}$ has a chi-square distribution with v degrees of freedom.

- neutron widths $v=1$
- radiation widths $v=$ large number
- fission widths $v \sim 4$

Chi-square distribution

$$
x=\frac{\gamma^{2}}{\left\langle\gamma^{2}\right\rangle} \quad P_{\mathrm{PT}}(x)=\frac{1}{\sqrt{2 \pi x}} \exp \left(-\frac{x}{2}\right)
$$

For neutron widths (s-waves), use the effective reduced neutron width

$$
\left.\Gamma_{n}^{0}=\Gamma_{n} / \sqrt{(} E\right)
$$

and

$$
x=\frac{g \Gamma_{n}^{0}}{<g \Gamma_{n}^{0}>}
$$

Chi-square distribution

$$
x=\frac{\gamma^{2}}{<\gamma^{2}>} \quad P_{\mathrm{PT}}(x)=\frac{1}{\sqrt{2 \pi x}} \exp \left(-\frac{x}{2}\right)
$$

For neutron widths (s-waves), use the effective reduced neutron width

$$
\left.\Gamma_{n}^{0}=\Gamma_{n} / \sqrt{(} E\right)
$$

and

$$
x=\frac{g \Gamma_{n}^{0}}{<g \Gamma_{n}^{0}>}
$$

and for easy handling use

$$
\int_{x_{t}}^{\infty} P_{\mathrm{PT}}(x)
$$

Neutron widths

Neutron width distribution

Example ${ }^{61} \mathrm{Ni}$

Example ${ }^{236} \mathrm{U}$

The statistical model

The nucleus at energies around S_{n} can be described by the
Gaussian Orthogonal Ensemble (GOE)
The matrix elements governing the nuclear transitions are random variables with a Gaussian distribution with zero mean.

- Consequences:
- The partial widths have a Porter-Thomas distribution.
- The spacing of levels with the same $J \pi$ have approximately a Wigner distribution.

Spacing distribution of two consecutive levels

\qquad

Evaluated nuclear data libraries

Libraries

- JEFF - Europe
- JENDL - Japon
- ENDF/B - US
- BROND - Russia
- CENDL - China

Common format:

ENDF-6

Contents:

Data for particle-induced reactions (neutrons, protons, gamma, other) but also radioactive decay data

Data are indentified by "materials"
(isotopes, isomeric states, (compounds))
ex. ${ }^{16} \mathrm{O}: \quad$ mat $=825$
natV: \quad mat $=2300$
${ }^{242 \mathrm{~m}} \mathrm{Am}: \quad$ mat $=9547$

Files for a material

from report ENDF-102

1 General information
2 Resonance parameter data
3 Reaction cross sections
4 Angular distributions for emitted particles
5 Energy distributions for emitted particles
6 Energy-angle distributions for emitted particles
7 Thermal neutron scattering law data
8 Radioactivity and fission-product yield data
9 Multiplicities for radioactive nuclide production
10 Cross sections for photon production
12 Multiplicities for photon production
13 Cross sections for photon production
14 Angular distributions for photon production
15 Energy distributions for photon production
23 Photo-atomic interaction cross sections
27 Atomic form factors or scattering functions for photo-atomic interactions
30 Data Covariances obtained from parameter covariances and sensitivities
31 Data covariances for nubar
32 Data covariances for resonance parameters
33 Data covariances for reaction cross sections
34 Data covariances for angular distributions
35 Data covariances for energy distributions
39 Data covariances for radionuclide production yields
40 Data covariances for radionuclide production cross sections

Example: part of an evaluated data file

The library JEFF-3.1

\qquad

Further Reading

Books/articles

- K. S. Krane, Introductory Nuclear Physics, Wiley \& Sons, (1988).
- G. F. Knoll, Radiation Detection and Measurement, Wiley \& Sons, (2000).
- P. Reus, Précis de neutronique, EDP Sciences, (2003).
- J. E. Lynn, The Theory of Neutron Resonance Reactions, Clarendon Press, Oxford, (1968).
- F. Fröhner, Evaluation and analysis of nuclear resonance data, JEFF Report 18, OECD/NEA (2000).
- C. Wagemans, The Nuclear Fission Process, CRC, (1991).
- A. M. Lane, R. G. Thomas, "R-matrix theory of nuclear reactions", Rev. Mod. Phys. 30 (1958) 257.
- G. Wallerstein, et al., "Synthesis of the elements in stars: forty years of progress", Rev. Mod. Phys. 69 (1997) 995.
- D. Cacuci (ed.), Handbook of Nuclear Engineering, Springer (2010).

Internet sites

www.nea.fr
www.nndc.bnl.gov
www.iaea.org
www-instn.cea.fr
www.cern.ch/ntof
www.irmm.jrc.be

