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Outline

• Introduction

– Why we need nuclear data

– The RPI nuclear data program

• Neutron Scattering 

– Why it is important

– Basic physics

– Types of neutron scattering phenomena

• Examples of different experiments

– Thermal neutron scattering

– Resonance neutron scattering

– Fast neutron scattering
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Why Should We Care About Nuclear Data?

Nuclear Data

(Uncertainty)
Geometry Data

Computational

Methods (Physics)

(Uncertainty??)

Results
Accuracy??

Reactor Physics Calculations

• Effective neutron Multiplication factor

• Neutron flux

• Burnup

• Kineticswww.llnl.gov 

The Shippingport Reactor (Critical in 1957)
http://www.pabook.libraries.psu.edu/palitmap/Shippingport.html
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Nuclear Data Lifecycle (Danon’s view)

Application Driven

Evaluation Validation
Differential 

Experiments

Integral 
Experiments

Evaluated Data 
File

ENDF/B-VII.1

Critical BenchmarksAt RPI

Publication(s)

User Needs

Publication(s) Publication(s)

Publication(s)

$
$ O

th
e
r 

U
s
e
rs

Appropriate Exp only

Applications



5
The Gaerttner LINAC Center

Where is the RPI LINAC ?
• It is on the highest point in Troy, NY

LINAC

Flight 

Stations
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Offices

RPI Campus
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Current Activity
• Time of flight measurements

– Resonance Region

• Capture (0.01 eV – 2 keV)

• Transmission (0.001 eV – 100 KeV)

• Capture to fission ratio (alpha)

• keV capture detector

• Neutron scattering (E<0.5 MeV)

– High energy (0.4-20MeV)

• Scattering (30 m flight path)

• Transmission (100m and 250m flight path)

• Prompt Fission Neutron Spectra

– High accuracy total cross section measurements using filtered beam

• Lead Slowing Down Spectrometer
– Simultaneous measurement of fission cross sections and fission fragment mass and energy distributions using 

the RPI lead slowing down spectrometer

– Measurements of energy dependent (n,p) and (n,a) cross sections of nanogram quantities of short-lived 
isotopes. (collaboration with LANL).

– Capture cross section measurements

• Other
– Research on medical isotope production

– S(a,b) measurements (at SNS in ORNL)
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Neutron Production Targets

Enhanced Thermal Target (ETT)Bare Bounce Target (BBT)

PACMAN Target
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Detectors

Transmission

Capture/multiplicity

Scattering

PFNS

25m

30m

45m
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Capability Matrix and Development
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RPI LINAC - Nuclear Data Measurement Capabilities 2015
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Motivation

The Neutron Transport Equation

• The scattering term appears in the neutron transport equation:

– Double differential scattering

– Total scattering is part of the total cross section

• Important for characterizing neutron slowing down from fission energy spectrum to 

the thermal spectrum

• Quantifies probability  to scatter from:

– Energy E’ to E

– Solid angle ’ to 
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The Concept of Compound Nucleus 

• The neutron incident on a target material first creates a compound nucleus.

• The probability to form a compound nucleus increases near energy levels in the 
compound nucleus.

– The magnitude of this increase is determined by the lifetime of the compound nucleus state.

– There are several decay modes resulting in different interaction rates.
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Types of neutron scattering

• By collision type:

– Elastic 

– Inelastic (usually results in gamma emission)

• By incident energy range:

– Thermal Scattering (E < 1 eV)

• Molecular structure is important

• Vibration rotational modes results in up scattering

– Resonance Scattering

• Similar to the thermal scattering effect

• Small energy change  neutrons can scatter in/out of a resonance

– Epi-thermal / fast neutron scattering

• Elastic/inelastic collisions
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Simple kinematics (Target at Rest)

• For target at rest the kinematic is usually done in center of mass system.

• For a given excitation state Q (this is a negative number) and a given 

scattering angle cosine m, the relation between cm and lab is given by:

• The neutron energy following a scattering collision is give by:

• For elastic scattering Q=0 and thus E`inelastic<E`elastic
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Example: 56Fe scattering cross section

Incident neutron data / ENDF/B-VII.1 / Fe56 / / Cross section
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Exited levels start at about 847 keV
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Example: 238U scattering cross section
Exited levels start at about 45 keV

Incident neutron data / ENDF/B-VII.1 / U238 / / Cross section

Incident energy (MeV)
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Angular Distribution of the scattered neutron

• The  probability that a particle of incident energy E will be scattered into the interval 

dµ about an angle whose cosine is µ as defined in the ENDF manual is:
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µ =cosine of the scattered angle in either the laboratory or the center of mass system

E =energy of the incident particle in the laboratory system

σs(E) = =the scattering cross section, e.g., elastic scattering at energy E as given in File 3 for 

the particular reaction type (MT)

l =order of the Legendre polynomial

σ(µ,E) =differential scattering cross section in units of barns per steradian
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P(µ) = Legendre polynomial of order l
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Example: 238U Elastic Scattering

Incident neutron data / ENDF/B-VII.1 / U238 / MT=2 : (z,elastic) / Angular distribution

Cosine of angle (C.M. sys)
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• The angular distribution strongly dependent on the incident energy
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How to measure scattering reactions

• Observable include:

– Neutrons

– Gamma – for inelastic scattering

• Type of measurements

– Total scattering cross section

• Elastic only (Fe is might be an exception)

– Can be obtained from resonance parameter analysis for transmission and capture measurements

– Can similarly be obtained in the URR

• Inelastic cross section

– Measure the excitation gamma

– Measure the scattered neutron

• Double differential scattering cross section (DDS)

– Measure the scattered neutron at different angles, need:

» Incident neutron energy

» Scattered neutron energy

» Scattering angle



20
The Gaerttner LINAC Center

Thermal Scattering
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Overview

• Thermal scattering refers to scattering of thermal neutrons

– The neutron energy is of the order of thermal motion of the scattering atoms

– The neutron energy is of the order of rotational and vibrational molecular bond

– Results in down and up scattering

• Experiments were done at the Spallation Neutron Source (SNS) at Oak 

Ridge National Laboratory (ORNL)

• Performed thermal scattering experiments at various temperatures and using 

different instruments for water, high density polyethylene (HDPE), and 

quartz (SiO2).
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SNS Spectrometers

Fine Resolution Fermi Chopper Spectrometer (SEQUOIA)

Wide-Angular Range Chopper Spectrometer (ARCS)

Choppers Monitor Sample

Detector Bank

Ω = -30-60⁰

Beam Stop
Neutron Source

18 m
2 m

5.5 m

Beam Stop

Sample

MonitorChoppersNeutron Source

Detector Bank

Ω = -28-135⁰

11.6 m

2 m

3.0-3.4 m
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SNS spectrometers
Fine Resolution Fermi  Chopper Spectrometer (SEQUOIA)

Wide-Angular Range Chopper Spectrometer (ARCS)
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Ef kf

Sample

Ei ki
Q = ki - kf

Measure the number of scattered neutrons as a function of Q and w

=>  S(Q,w)  (the scattering function for inelastic scattering)
depends ONLY on the sample

Thermal Neutron Scattering Geometry

In our study: 

• Neutron Scattering experimental plot: Double differential cross 

section (instead of S(Q,w)) vs. scattered energy (Ef, instead of w)
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Scattering Kernel

Scattering Probability

– Double Differential Scattering Cross Section (DDSCS)

– Inelastic scattering

𝜎 𝐸 → 𝐸′, Ω =
𝜎𝑏
2𝑘𝑇

𝐸′

𝐸
𝑒  −𝛽 2𝑺 𝜶, 𝜷

𝛽 =
𝐸′ − 𝐸

𝑘𝑇
𝛼 =
𝐸′ + 𝐸 − 2𝜇 𝐸𝐸′

𝐴𝑘𝑇
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Thermal Scattering Measurements 

Overview
• Preformed measurements at SNS

– SEQUOIA

• Water

• Medium Density Polyethylene (MDPE)

– ARCS

• High Density Polyethylene (HDPE) 295 °K and 5 °K

• Quartz (SiO2) at 20, 300 550, 600 °C

– VISION (measures S(w))

• Lucite, Lexan, Polyethylene at 5 °K and 295 °K

• The double differential scattering data (DDSD) can be used to benchmark thermal 

scattering evaluations

• Method to generate S(a,b) from the experimental data are under development:

1. Convert the data (S(Q,w)) to phonon spectrum (use low values of Q to limit multiple phonon scattering)

2. Remove the elastic peak from the DDSD and convert the inelastic part directly to S(a,b)

• Developed capabilities to use LAMMPS code to calculate the phonon spectrum and 

scattering kernel.
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Scattering from Water

• For 160 meV incident energy where older RPI data exists:

– The SNS experimental data is in agreement with the older RPI data

– The simulation is in agreement with experiments

• For lower incident energy (55 meV) the simulation shows structure that is not visible 

in the data
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ARCS vs SEQUOIA

• 250 meV incident energy

• ARCS shows slightly better 

energy resolution compared 

to SEQUOIA 

– ARCS sample: CH2 Sheets

– SEQUOIA sample: CH2

powder

• Sheets allow for coherent 

elastic scattering

Ω = 25 deg
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New Raw Experimental Data

• Polyethylene using ARCS-Wide Angle Spectrometer at SNS

• Low temperature reveals the vibrational/rotational modes
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• Low temperature measurements are essential in order to resolve the structure.

• Convert the measured S(Q,E) data for phono spectrum using the SNS DAVE code:

G(E) - generalized phonon density-of-states(GDOS)

Q - wave vector transfer,

S(Q,E) - structure dynamics factor.  

M - mass of the atom,          

- mean square displacement. 

Phonon spectrum from measured S(Q,E)
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Example for HDPE
Experiment Normalized GDOS

• The phonon spectrum was processed with NJOY 2012

• The experimental response simulated with MCNP 6

• The agreement with the experiment is improved
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Example for HDPE other angles

Experiment Normalized GDOS
• Similar improvements

• Other incident energies and angels available
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Polyethylene Total Cross Section 

• The experimentally derived phonon spectrum is in good agreement with the total 

cross section measurement.

• The Experimental vs theory driven measurement give slightly different results
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Resonance Scattering

(including up scattering)
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238U Resonance Scattering

• From a theoretical point of view, the neutron angular 
distribution can be calculated from resonance 
parameters

• Neutron scattering kinematics in the resonance region 
is normally treated as free gas.

• The derivation of the  scattering kernel in most (if not 
all) Monte Carlo (MC) codes assumes a constant cross 
section

– OK in the thermal region, but not for the low lying 
resonances.

• Resonance scattering experiments were used to 
validate an improved model implementation
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Example from MCNP5
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MCNP  Scattering  Kernel Treatment

“Sampling the target velocity”
MCNP Manual: “If the energy of the neutron is greater than 400 kT and the 
target is not Hydrogen the velocity of the target is set to Zero”  (Asymptotic 
kernel)

• The 400 kT (~10 eV for T=300

K) limit can be easily fixed.

(but still assume the cross

section does not depend on

energy)

• In this example, with the correct

model neutrons have a higher

probability to up-scatter into the

6.671 eV resonance
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Effect on Reactor Calculations (HTR)
• B. Becker, R. Dagan, C.H.M. Broeders, G.H. Lohnert, Improvement of the resonance scattering 

treatment in MCNP in view of HTR calculations, Annals of Nuclear Energy, Volume 36, Issue 3, 

Pages 281-285, April 2009.
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Experimental Investigation

• Dagan:

– Implemented the new Kernel in MCNP inputting it as an 

S(a,b) table.

– Showed the effect on Keff of different systems.

• Danon: find a simple experiment to benchmark the 

new kernel. Considered:

– Capture experiments in the 238U scattering resonance at 

36.68 eV

– Can it be done at room temperature (instead of 1200K)?

– Design a scattering experiment measuring the detailed 

spectrum of the scattered neutrons.
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A Simple Neutron Scattering Experiment

• Use the Time-Of-Flight (TOF) method
– The TOF will correspond to the scattered neutron energy

– Scattering in forward and backward scattering angles can be measured

Electron Beam

Neutron

Producing Target

238U sample

Good Collimation
Neutron Detector

~25.5 m

n


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A First Collision Analytical Model

• Consider a simple back scattering geometry
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Analytical Model and MCNP

• Compare the analytical model to MCNP5

– Excellent agreement (for first collision)
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238U Resonance Scattering 

Experimental Setup
• Compare forward to backward scattering from depleted 238U samples

• The forward angle 38.9° is and the backward angle is 143.8°

Back Scattering Geometry
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Experimental Setup

SampleBlank

Ta Target
e- beam line

Moderator
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Samples

Sample ID
Width

(cm)

Height 

(cm)

Thickness

(cm)

Weight 

(g)

Thin 7.62  0.05 7.62  0.05 0.1536 169 ± 0.5

Thick 7.62  0.05 7.62  0.05 0.329 362 ± 0.5
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Measured Data

• Thick Sample time-of flight spectrum forwards scattering
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Other Considerations

• In order to compare with calculations:
– Need good energy calibration

• Use resonances in the Cd overlap filter

– Need the neutron flux shape
• Obtained from an experiment with a Pb Sample

• The result is the product of the neutron flux shape with the detector 
energy response    EEI 00
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MCNP Simulations

• Source

– Treat the source as a point source with energy distribution 
of (E) ~ E-1.2

– Simulate the LINAC 50 ns pulse width

• Tally

– Use tally F5 for the detector response

– Tally the flux as a function of time

• Sample

– Use actual size dimensions 

– Assume pure 238U

• Include the Cd overlap filter in the simulation
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Other Resonances
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Thorium Scattering Measurements
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Thorium Backscattering Experimental Results
• Two sample thicknesses were used

• The backscattering angle was 140.8° and no moderator

• Experimental data was compared to current MCNP Doppler broadening and the new 
Doppler Broadening Rejection Correction (DBRC) method implemented by Dagan 
in MCNP 5

• The DBRC method is in good agreement with the experiments
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Is There More to the Line Shape?

• Comparing two measurements with different pulse width 300 

ns and 150 ns
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Conclusions

• Neutron resonance scattering of 238U were preformed for 
forward and backward angles.

• The current versions of MCNP and GEANT 4 under predict the 
back angle scattering by nearly a factor of 2

• The measurements are in excellent agreement with a new 
resonance free gas scattering kernel by Dagan.

• More accurate experiments are required in order to validate the 
model in the forward angle

• Results with Th indicate the model might still be refined.
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Fast Neutron Scattering
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Differential Scattering measurements
• Use monoenergetic pulsed neutron source

• Measure the TOF spectrum using multiple detectors located around the sample

• Requires thin sample to eliminate multiple scattering

• Example below are form the INL 10 angle spectrometer

A. B. Smith, P. T. Guenther, and J. F. Whalen Phys. Rev. 168, 1344 – Published 20 April 1968

A.B. Smith, P. Guenther, R. Larsen, C. Nelson, P. Walker, J.F. Whalen, 

Multi-angle fast neutron time-of-flight system, Nuclear Instruments and 

Methods, Volume 50, Issue 2, Pages 277-291,1 May 1967.
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Inelastic Scattering Cross Section
• Use a high resolution gamma detector to detect gammas following inelastic scattering

• Use gamma branching, detector efficiency, and neutron flux to determine the cross section

R. Beyer, R. Schwengner, R. Hannaske, A.R. 

Junghans, R. Massarczyk, M. Anders, D. 

Bemmerer, A. Ferrari, A. Hartmann, T. Kögler, 

M. Röder, K. Schmidt, A. Wagner, Inelastic 

scattering of fast neutrons from excited states in 
56Fe, Nuclear Physics A, Volume 927, Pages 41-

52, July 2014.
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Pulsed sphere measurements

• Use a DT source in the center of a sphere of material

• Measure the leakage from the sphere using liquid scintillator detectors.

• Use as benchmark by comparing with simulations

R. J. Procassini, M. S. McKinley, Modern Calculations of Pulsed-Sphere Time-of-Flight Experiments Using the Mercury Monte Carlo Transport Code

LLNL-PROC-453212, September 3, 2010

14 MeV source
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The RPI fast neutron scattering system

• Use a 60 MeV pulse electron LINAC to produce neutrons (white neutron source)

• Use samples with different thicknesses (enhance multiple scattering)

• Use 8 angles, two detectors measure at the same angle.

• Measure all scattered neutrons
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Objectives

• Provide accurate benchmark data for scattering 

cross sections and angular distributions in the 

energy range from 0.5 to 20 MeV

• Can be developed to provide differential elastic 

and inelastic scattering cross section 

measurements

• Design a flexible system: now also used for 

fission neutron spectra measurements
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Methodology
• Characterize the neutron flux and detector 

efficiencies

• Measure the neutron scattering distribution at 

several angles around the sample

– TOF used to measure the neutron’s incident energy

– Liquid scintillators used to discriminate neutrons 

from gammas

• Measurements are compared with detailed 

simulations of the system 

– Different cross section libraries assessed

• Identify energy/angle regions where libraries may 

be improved by comparing:

– Total Angular TOF Data

– Inelastic-to-Elastic Ratios

– Elastic Angular TOF Data
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TOF Scattering Yield Measurement

L1,t1,E1

L2,t2,E2

• Measure the total TOF t=t1+t2

• For all scattering events E2<E1

• In most cases the energy loss is small E1~E2

• Since t1>>t2 and E1~E2 then for presentation 

the incident neutron energy E1 is calculated 

using t and L=L1+L2
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First Order Approximation of the 

Scattering Yield

 





2

),(
1)()'(),(

)( Ef
eEEEY

LET


Detector 

Efficiency

Incident Flux

Probability to Interact

Probability to Scatter

in direction 

In this approximation multiple scattering is ignored
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Experimental Setup Overview
• A well-collimated continuous-energy pulsed neutron beam scatters from a 

sample and is measured by detectors positioned around the scattering 

sample
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Scattering Detection System: Experimental Setup

Pioneered the use of 

Red Bull can for 

nuclear physics

(as low mass sample 

holder)
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Scattering Detection System:

Experimental Setup
• Detector Array

– 8 EJ301 Liquid Scintillation 
Detectors

– 8 A/D channels

– Pulse Shape discrimination in TOF

• Data Processing System
– Data Processing Computer (SAL) –

Control Room

• Computer Controlled Power 
Supply
– Chassis - SY 3527      Board -

A1733N

• Sample Holder / Changer

Neutron Beam

Detector Array

Acqiris AP240 DAQ Board

PCI Chassis Extention

CAEN Computer

Controlled Power Supply

Printer

HAL

Dell -

Precision

670

SAL

Data Analysis Computer

(Control Room)
Data Collection

Computer

(25m Station Room)
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DAQ system
• All DAQ is automated using script based software running under Windows

• Alternate between sample, graphite and open (background) measurements

• Each position is measured for about 10 min

• Fission chamber monitors are used to normalize beam intensity fluctuations.

• Detector/system gain is periodically aligned using 22Na
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Pulse Shape Analysis – Classification

• EJ-301 (NE-213) liquid scintillator respond to neutrons and 

gammas

– Photons interact with electrons via Compton scattering

– Neutrons interact with protons (1H) via proton recoil

• Percentage of delayed light production varies between the two 

modes

Pulse Classification Analysis performed 

to distinguish neutrons from gammas
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Pulse Classification Analysis – Digital Data

• A collection of gamma and neutron pulses were obtained

– 5.6 x 106 pulses from a 137Cs gamma source (661 keV)

– 1.9 x 106 pulses from a TOF measurement with the graphite reference 

sample and a detector positioned at 155º (incident neutrons < 4.439 MeV)
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Pulse Classification Analysis – Method

• A reference pulse shape for gamma and neutrons were obtained 

by:

1. Averaging pulses with similar integrals (area under pulse) to form 

representative pulses [Integrals between 300 and 4000]

2. Peak normalizing the representative pulses

3. Peak aligning the representative pulses
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Pulse Classification Analysis – Method
• All representative pulses were averaged to form  reference neutron 

(nref) and gamma (γref) pulse shapes

• Each digitized pulse was smoothed and compared to the nref and γref 

in the region between 45 and 105 ns
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• The 137Cs was examined to quantify how well gammas were classified with 

PCA method

– 99% of measured events from the 137Cs (661 keV) and 22Na (0.511 and 1.274 keV) 

sources were classified as gammas

– Gammas erroneously classified as neutrons are a concern for pulses with low 

integrals
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Pulse Classification Analysis – GMC 

• Ratio of gammas erroneously classified as neutrons to gamma at 

each pulse integral bin was found and a pulse function was fit to 

with Origin 9.1 that has the following form:

– The GMC relies only on

energy deposited NOT incident

gamma energy

– The GMC eliminated the 

neutron contribution for 22Na

and 137Cs
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Flux Shape Measurement

• Use a fission chamber with 
~391 mg 235U in the sample 
position

• Use ENDF/B 7.0 fission 
cross section

• Correct for transmission of 
all materials between the 
source and sample

• Compare to a similar 
measurement using EJ301 
and SCINFUL calculated 
efficiency

• Combine the two data sets 
using fission for E< 1 MeV
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Efficiency as a Function of Energy
• Objective: 

– MCNP simulation of EJ301 
response in the sample position 
must precisely agree with the 
measurement

• Methodology:

– Use the measured flux as a source 
in MCNP simulation of the in-
beam detector response

– In MCNP set the detector 
efficiency =1 (tally only the 
neutron flux shape)

– Divide the measured response by 
the simulation results to get the 
efficiency (E) for each detector

– During the experiment periodic 
gain calibrations are done to 
minimize gain shift.
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Neutron Beam Collimation

• Characterize the collimation system

– Ensure beam diameter agrees with sample diameter of 7.62 cm

– Verify measurements and calculations agree
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• Sum all files and dead-time correct.

• The experimental count rate corrected for

background, Ri, was obtained by subtracting

monitor normalized open data, Ri
O, by sample

data, Ri
S, for each channel, i:

Data Reduction

O

iO

S
S

ii R
M

M
RR 
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MCNP Simulations

• Objective of the MCNP model is to mimic an experiment

• The MCNP Model includes:

– Concrete floor, Optical Table, Center beam vacuum tube, Mylar 

vacuum windows, aluminum vacuum window, depleted uranium filter

– Neutron flux shape (source term)

– Tallies convoluted by energy-dependent detector efficiencies

– Library for scattering sample varied:

• ENDF/B-VII.1, JEFF-3.2,

JENDL-4.0, etc.

Vacuum
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Data Analysis

• Compare the shape (as a function of TOF) between the measurements and 
simulations

• Use graphite as a reference in all measurements

– Differences between the measurement and simulation of graphite are 
considered systematic errors

• Measurements of Be, Mo and Zr

– The efficiency was derived from SCINFUL calculations

– Neutron flux shape based on a fit to in-beam measurements with EJ-301 and 
Li-Glass

– Used individual detector normalization of the simulation to the experimental 
data based on graphite measurement

• For 238U experiment

– Flux was derived from 235U and EJ301 in-beam measurements

– The efficiency was adjusted to match the MCNP calculations to the in-beam 
measured data 

– Use one normalization number for all detectors (global normalization)
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EJ301 Detector scattered flux at 90deg

Experimental Data

Simulation with ENDF7
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EJ301 Detector scattered flux at 52deg

Experimental Data

Simulation with ENDF7

Carbon Experimental Results
for Be measurement
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EJ301 Detector scattered flux at 26deg

Experimental Data

Simulation with ENDF7
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Beryllium Experimental Results
4cm
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Molybdenum Experimental 

Results5cm
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Zr – 6 cm Thick Sample

26 deg

72 deg 90 deg

52 deg

D. P. Barry, G. Leinweber, R. C. Block, and T. J. Donovan, Y. Danon, F. J. Saglime, A. M. Daskalakis, M. J. Rapp, and R. M. Bahran, “Quasi-

differential Neutron Scattering in Zirconium from 0.5 MeV to 20 MeV”, Nuclear Science and Engineering, 174, 188–201, (2013)
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Zr – 10 cm Thick Sample

26 deg

72 deg

52 deg

90 deg
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Figure-Of-Merit
• Objective

– Quantify how well the MCNP 

simulations match the experimental 

data

• Methodology

– Calculate over entire ROI

• 0.5 to 20 MeV

– Calculate FOM for each library

• ENDF/B-VII.1

• JEFF-3.2

• JENDL-4.0

– If FOM > 1 for 238U or NatFe the 

observed differences are greater than 

Ref

FOM =
1

I
∙  

𝑖=0.5 MeV

I=20 MeV 𝐶𝑖
𝑋 −  N ∙ MC𝑖

𝑋 ∙
𝑀𝑋
𝑀Ref

2

𝛿𝐶𝑖
𝑋 2 + 𝐶𝑖

𝑋 ∙
ε𝑠𝑦𝑠
 N

2

i - Energy (or TOF) bin

𝐶𝑖
𝑋 - Neutron counts from sample
 N - Normalization factor

MC𝑖
𝑋 - MCNP counts from sample with specific library 

𝑀𝑋 - Monitors counts during sample-in measurement

𝑀Ref - Monitors counts during Ref measurement

ε𝑠𝑦𝑠 - Systematic uncertainty

𝛿𝐶𝑖
𝑋 - Statistical uncertainty for sample 

X - Ref or sample of interest

†𝐶𝑖
𝑋and MC𝑖

𝑋 are background subtracted
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238U TOF Results
• First three inelastic states are at 0.045, 0.148, and 0.307 keV

• Above 1.5 MeV neutrons from fission contribute to the measured counts

– “Neutron induced neutron measurement”
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238U TOF Results
• Measurement consistency was confirmed by examining the response from detectors that 

were not repositioned between experiments

• Observed differences that occur between 238U experimental data and the MCNP 
simulations can provide evaluators with additional information needed to construct a more 
accurate 238U library
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238U TOF Results - FOM

Angle ENDF/B-VII.1 JENDL-4.0 JEFF-3.2

27 1.46 1.08 1.08

29 3.65 2.59 3.04

45 1.04 1.59 1.35

60 1.70 2.49 1.29

77 0.87 1.57 1.21

77 1.06 1.32 1.33

112 0.33 0.56 0.94

113 0.32 0.52 1.09

130 1.56 1.59 2.28

130 1.88 1.95 2.65

153 2.15 0.91 0.89

156 3.54 1.42 1.34

153 3.20 1.31 1.35

156 4.28 1.75 1.74

 FOM:

 The JENDL-4.0 238U library had the best overall agreement with the data; specifically, for detectors 

positioned at scattering angles greater than 90°

 The JEFF-3.2 also performed well with detectors at back angles; however, varied greatly with 

detectors positioned at ≈110° and 130°

 The ENDF/B-VII.1 library had good agreement with experimental data between 45º to 130º (with 

the exception of 60°)

†Bold values indicate best fitting libraries.
Angles with two bold values indicate that the two libraries were statistically indistinguishable

A.M. Daskalakis, R.M. Bahran, E.J. Blain, 

B.J. McDermott, S. Piela, Y. Danon, D.P. 

Barry, G. Leinweber, R.C. Block, M.J. Rapp, 

R. Capote, A. Trkov, “Quasi-differential 

neutron scattering from 238U from 0.5 to 20 

MeV”, Annals of Nuclear Energy, Volume 

73, Pages 455-464, November 2014
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IAEA 238U Evaluation

• JEFF-3.1.2

• Collaboration with IAEA† on their 238U 

evaluation

– Agreement with experimental data provides a means to 

benchmark their new evaluation

89

†Dr. R. Capote and Dr. A. Trkov

R. Capotea, A. Trkovb, M. Sinc, M. Hermand, A. Daskalakise, Y. Danon, 

“Physics of Neutron Interactions with 238U: New Developments and 

Challenges,” Nucl. Data Sheets, vol. 118, pp. 26-31, Apr. 2014.500 800 1200 1600 2000 2400 2800 3128
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NatFe Scattering Experiment Setup

• 56Fe Identified as an isotope of interest for Gen 

IV reactors and WPEC-SG26

• Iron consists of 4 naturally occurring isotopes:

– 54Fe (5.845%), 56Fe (91.754%), 
57Fe (2.119%), and 58Fe (0.282%)

• TOF experiments for NatFe were performed 

similar to 238U experiments:

– 7 angles were measured

– Detectors at ≈155º were not repositioned

– Three sets data were collected:

• NatFe, Ref, Open Beam

– Beam monitors recorded fluctuations in 

neutron intensity

Upstream vacuum
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NatFe TOF Results - Forward angle
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• Resonance structure visible from 0.5 to ≈3 MeV

• Below 1.3 MeV only elastic neutrons were measured

– 56Fe first inelastic state is 0.847 MeV
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NatFe TOF Results – Back angle

• Measurement consistency was again confirmed

• Structure at back angles was more prominent in the data than 

MNCP simulation
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NatFe TOF Results - FOM

Angle ENDF/B-VII.1 JENDL-4.0 JEFF-3.2

30 6.68 5.36 13.54

45 5.80 4.27 7.43

61 7.22 6.41 7.28

77 6.14 6.34 7.26

111 4.68 3.30 4.94

109 5.12 3.28 4.89

130 3.11 2.16 4.03

130 4.82 3.72 6.51

153 5.44 5.60 7.32

153 5.26 4.75 8.09

156 4.85 5.02 6.27

156 5.51 5.64 9.10

 FOM:

 The JENDL-4.0 238U library had the best agreement with the data

 The ENDF/B-VII.1 library had good agreement with detectors positioned at back angles of 155º

 The JEFF-3.2 had the worst agreement of the three evaluations examined

†Bold values indicate best fitting libraries.
Angles with two bold values indicate that the two libraries were statistically indistinguishable
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Response Function Development

• Provide an additional way to assess evaluations with 

experimental data

– Specifically, provide a measured quantity related to 

elastic and inelastic scattering

• At each TOF bin near mono-energetic neutrons were 

measured

• Response Function (RF) Development:

– Isolate a narrow energy region and record each pulse’s 

integral, I (area under pulse)

• Distribution for a particular neutron energy

– 23 RF were developed for neutron energies between 0.5 

and 3.2 MeV

• 0.1 MeV intervals up to 2.0 MeV

• 0.2 MeV intervals between 2.0 and 3.2 MeV

– Unique for each detector
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Inelastic-to-Elastic Ratios
• I/E range from 1.4 to 2 MeV 

– Only two energies are expected:

• Elastic scattering

• Inelastic from 56Fe†

• RF with energies corresponding to elastic 

and inelastic scattering are fit to the 

scattering data

• Ratio of inelastic-to-elastic was calculated

†54Fe, 57 1st state ≈1.4 and ≈ 0.12 MeV, 58Fe only 0.282%
‡Not differential XS ratios (multiple scattering)

𝐶 E𝑛 = 𝐴 ∙ R E𝑒𝑙 + 1 − 𝐴 ∙ R E𝑖𝑛𝑙

I/E =
1 − 𝐴

𝐴
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NatFe I/E Results

• Results – Forward Angles:

– Forward detectors underestimate I/E ratios

– The I/E ratio was greater than 1 for detectors close to 90º at energies near 2.0 

MeV indicating sensitivity to inelastic scattering

Sensitive to 

inelastic scat.
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NatFe I/E Results

• Results – Back Angles:

– All evaluations had good agreement up to 2.0 MeV where 

ENDF/B-VII.1 overestimates the I/E ratio 

1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

I/E Ratio JEFF-3.2

I/E Ratio ENDF/B-VII.1

I/E Ratio JENDL-4.0
Nat

Fe Ratio (Measured)

I/
E

 R
a

ti
o

Incident Neutron Energy [MeV]

Detector 6 at 109
o



98
The Gaerttner LINAC Center

NatFe I/E Results

• Forward scattering angles:

– The ENDF/B-VII.1, JEFF-3.2, and JENDL-4.0 evaluations were in agreement 
with 9, 5, and 5 energy bins, respectively (28 total energy bins).

• Back scattering angles:

– The ENDF/B-VII.1, JEFF-3.2, and JENDL-4.0 evaluations were in agreement 
with 41, 37, and 39 energy bins, respectively (56 total energy bins).

• I/E and TOF:

– Although I/E ratios may be in good agreement with the experimental values this 
should be used in parallel with TOF results to assess the accuracy of an 
evaluation.

• To separate elastic and inelastic events in TOF another 
method that uses RF was developed

98
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Moving Window Discriminator

• Locate “end point” location for 

each measured RF

• TOF used to determine elastic 

and inelastic energies

– Set discriminator to max pulse 

integral for inelastic neutrons

– Correct for missing elastic 

contribution (next slide) to 

preserve the detection efficiency
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Moving Window Discriminator

• At each TOF the fraction of the elastic RF above the discriminator was 
calculated and the measured counts were corrected

• High statistical uncertainties come from limited counts present in RF and 
scattering experiments
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NatFe Elastic Scattering
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• The JENDL-4.0 evaluation overestimated the elastic signal at 77°

• It seems that the I/E ratio for JENDL is low because the elastic scattering is too 

high.
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NatFe FOM  - Elastic only (1.4 - 2 MeV)

• The JEFF-3.2 evaluation had the best agreement with the elastic only 

experimental data and the ENDF/B-VII.1 evaluation had the least

• This technique was used to assess only elastic scattering 

• Future improvements to RF could reduce uncertainties above 2.0 MeV

Angle ENDF/B-VII.1 JENDL-4.0 JEFF-3.2

30 20.38 22.61 6.64

45 11.07 7.11 6.64

61 4.30 9.58 5.15

77 4.20 34.65 9.23

111 10.60 4.36 2.94

109 3.81 1.26 1.10

130 1.72 0.82 0.29

130 3.20 1.12 0.58

153 5.49 4.93 2.45

153 12.74 9.99 4.33

156 2.70 2.66 1.13

156 6.18 5.24 1.92
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Conclusions

• Measurements at RPI include: thermal, resonance , and fast neutron scattering

• The fast neutron detector array measures the neutron scattering yield and fission 

neutron emission from a sample

• Simulation of the system with different libraries shows differences from the 

experimental data

– Can be used to benchmark evaluations

– Can be used to improve evaluations

• The accuracy of the experiments  is sufficient to provides:

– A recommendation of which evaluated library is best for treatment of neutron scattering

– Pinpoint the differences in angle and energy and provide information to evaluators. 

• Future outlook

– Expand the system to neutrons below 0.5 MeV

– Perform similar measurements at LANL with the Chi Nu fast detector array.
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Some Related RPI Publications

• Journal

– A.M. Daskalakis, R.M. Bahran, E.J. Blain, B.J. McDermott, S. Piela, Y. Danon, D.P. Barry, G. Leinweber, R.C. Block, M.J. Rapp, R. Capote, A. Trkov, “Quasi-
differential neutron scattering from 238U from 0.5 to 20 MeV”, Annals of Nuclear Energy, Volume 73, Pages 455-464, November 2014.

– R. Dagan, B. Becker, Y. Danon, F. Gunsing, S. Kopecky, C. Lampoudis, O. Litaize, M. Moxon, P. Schillebeeckx, “Impact of the Doppler Broadened Double 
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