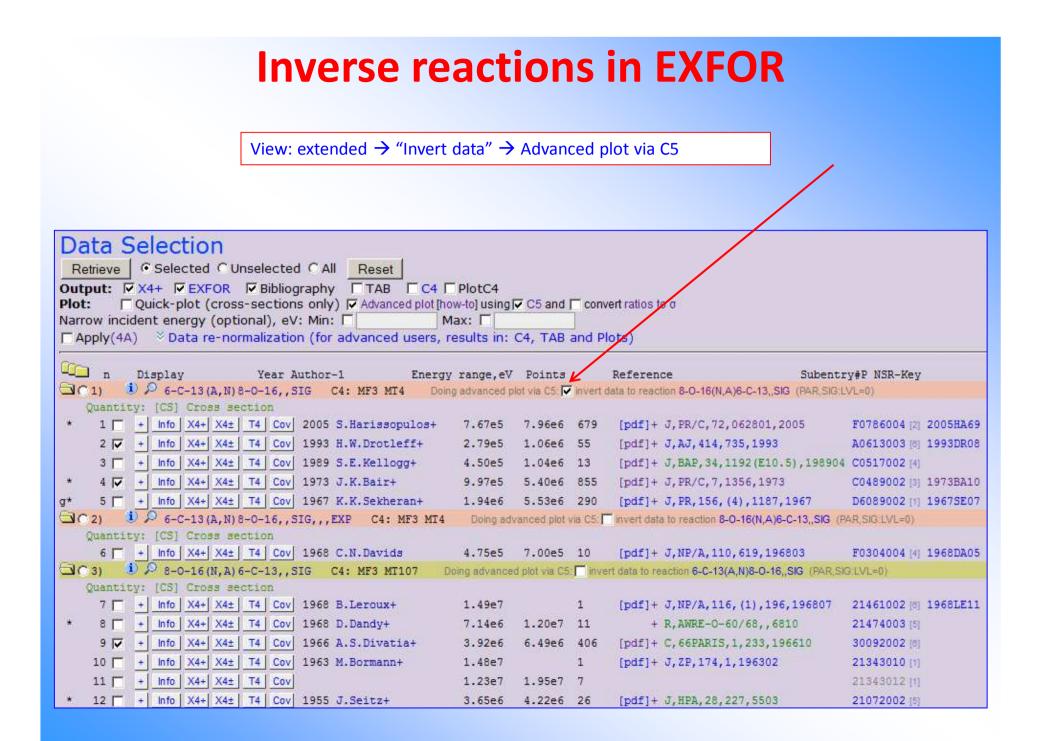
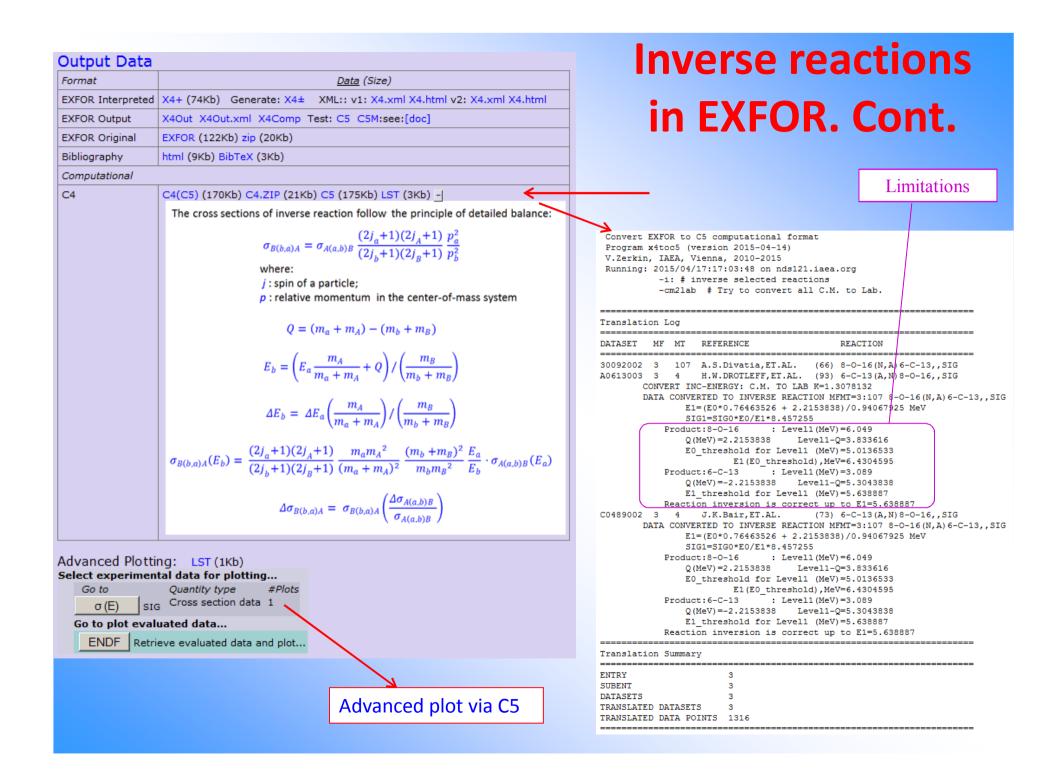
Experimental (EXFOR) and evaluated (ENDF) databases. Retrieving, plotting, processing of cross section and covariance data

Lecture II.

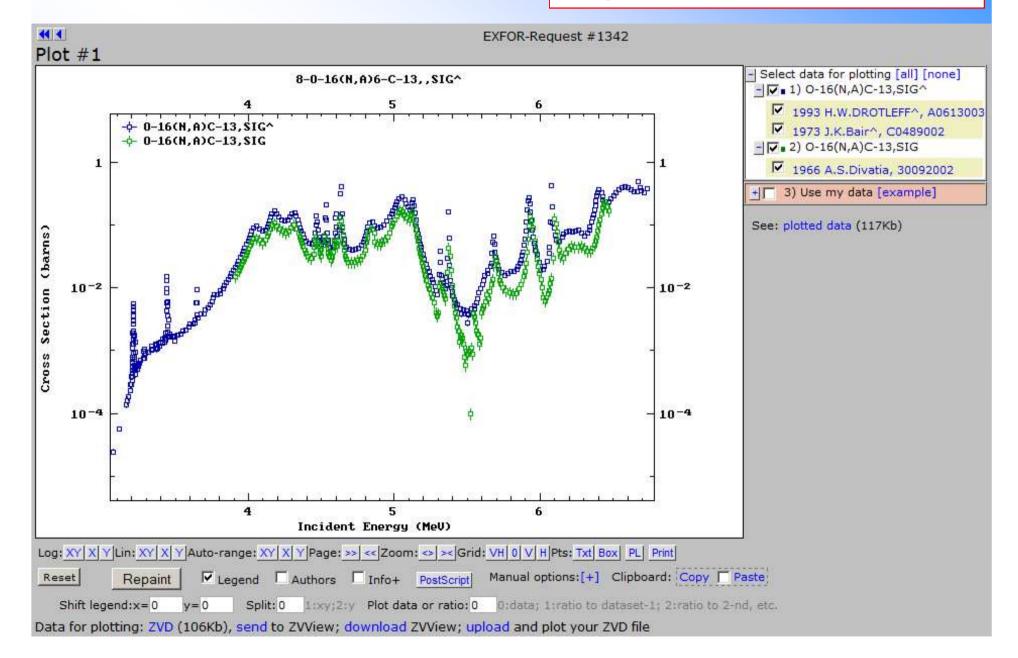
Viktor Zerkin

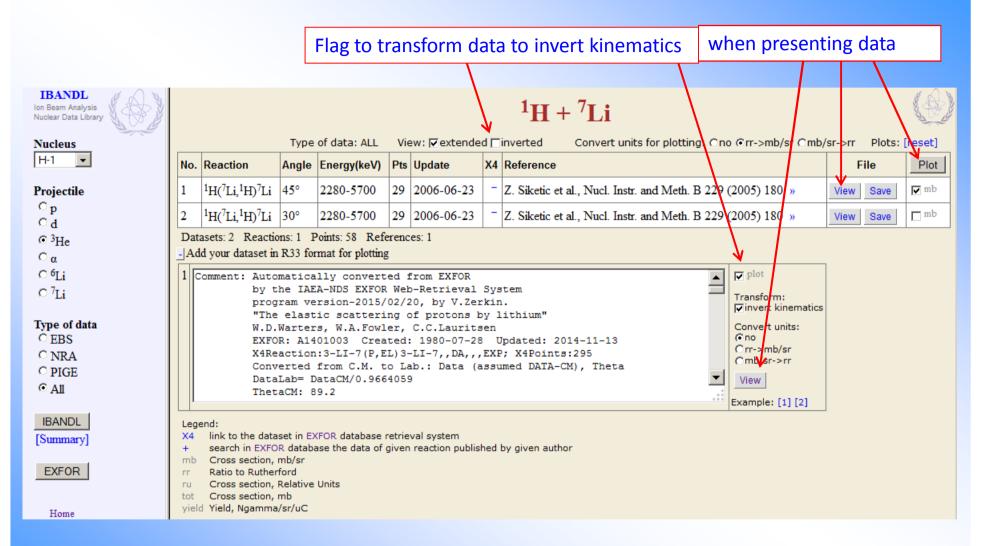

International Atomic Energy Agency, Nuclear Data Section


Joint ICTP-IAEA School on Nuclear Data Measurements for Science and Applications Trieste, Italy, 19-30 October 2015

Topics:

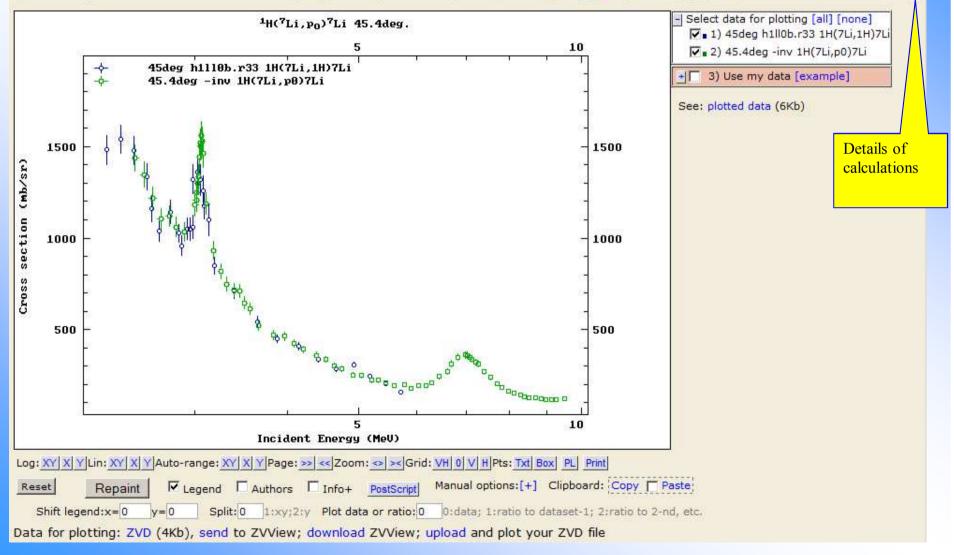
- 1. On-line re-calculations of cross sections: inverse reactions, inverse kinematics
- 2. EXFOR data correction (re-normalization) system
 - 1. Automatic re-normalization
 - 2. User's corrections, experts' corrections
- 3. Constructing a covariance matrix from EXFOR uncertainties
- 4. Uploading systems for nuclear data professionals
- 5. Uploading data for plotting
- 6. Uploading ENDF file for checking, plotting, processing
- 7. Uploading EXFOR file
- 8. Uploading your experimental data for various operations


On-line re-calculations of cross sections



Inverse reactions in EXFOR. Cont.

flag : inverted (for reactions and authors)

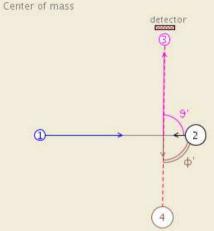

IBANDL contains angular distributions $d\sigma/d\Omega(\theta, E)$ for incident charged particle reactions

Welcome to Web-ZVView!

Interactive plotting of IBANDL and SigmaCalc data

1) θ=45° E1=2.3-5.7MeV Source: Z. Siketic et al., Nucl. Instr. and Meth. B 229 (2005) 180 +

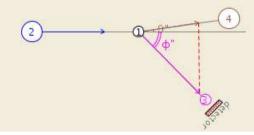
2) θ=45.4° E1=2.5-9.5MeV Source: W.D. Warters+(1953), Jour. Physical Review, Vol.91, Issue.4, p.917 [inv] Original: ⁷Li(p,p0)⁷Li E1=0.4-1.4MeV φ=45.4° θ=81.1° ±



- Original (direct)

- C.M.

beam


detector

3

C.M. Reaction: ⁷Li(p,p₀)⁷Li Qvalue=0 nPoint:71 E'_{cm}=1195.3keV M1: Incident p M₁=1.007825 E₁'=1045.2keV M2: Target 7Li M₂=7.0160046 E₂'=150.1keV M3: Scattered p M₃=1.007825 E₃'=1045.2keV θ'=89.3° σ'(θ')=43.5874mb/sr±5.0% M4: Recoil 7Li M₄=7.0160046 E₄'=150.1keV φ'=90.7°

- Inverse

Inverse-kinematics

Inverse

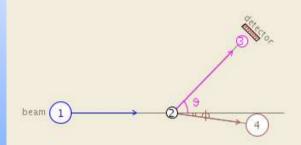
- Original (direct)

beam 1 2 4

Original (direct)

 Reaction: ⁷Li(p,p_0)⁷Li
 Qvalue=0
 nPoint:71

 M1: Incident
 p
 M1=1.007825
 E1=1367.0keV


 M2: Target
 7Li
 M2=7.0160046

 M3: Scattered
 p
 M3=1.007825
 E3=1070.6keV
 0=81.1° σ(0)=45.1053mb/sr±5.0%

 M4: Recoil
 7Li
 M4=7.0160046
 E4=296.4keV
 φ=45.4°

+ C.M. + Inverse - Result:

Result: inverse-kinematics data presented in R33 format

Result: inverse-kinematics data presented in R33 format

Reaction: ¹H(⁷Li,p₀)⁷Li Qvalue=0 nPoint:71 M1: Incident 7Li M₁=7.0160046 E₁=9516.4keV M2: Target 1H M₂=1.007825 M3: Ejectile p M₃=1.007825 E₃=2061.1keV θ=45.4° σ(θ)=122.484mb/sr±5.0% M4: Residual 7Li M₄=7.0160046 E₄=7455.3keV φ=8.2°

- Calculations

T		1	Original (I	ab.):	⁷ Li(p,p ₀) ⁷ L	i Q=0			Center of mass				Inverse ki				inametics					
#	E ₁ , keV	θ°	σ(θ), mb/sr	φ	σ(φ)	E ₃	E4	E'cm	θ'	φ'	σ'(θ')	E'1	E'2	E'3	E'4	E2"	φ"	σ"(φ")	θ"	σ"(θ")	E3"	E4"
1	358.6	81.1	529.741	45.4	4.35366e6	280.851	77.7494	313.558	89.3	90.7	511.914	274.174	39.3842	274.174	39.3842	2496.4	45.4	1438.52	8.2	164261.	541.3	1955.2
2	368.3	81.1	497.427	45.4	4.08809e6	288.447	79.8525	322.04	89.3	90.7	480,687	281.591	40.4495	281.591	40.4495	2563.9	45.4	1350.77	8.2	154241.	555.9	2008
3	378.5	81.1	450.076	45.4	3.69894e6	296.436	82.064	330.959	89.3	90.7	434.93	289.389	41.5698	289.389	41.5698	2634.9	45.4	1222,18	8.2	139559.	571.3	2063.6
4	388.2	81.1	407.779	45.4	3.35132e6	304.033	84.1671	339,441	89.3	90.7	394.056	296.805	42.6351	296.805	42.6351	2702.5	45.4	1107.33	8.2	126444.	585.9	2116.5
5	398.4	81.1	413.26	45.4	3.39637e6	312.021	86.3786	348.359	89.3	90.7	399.353	304.604	43.7553	304.604	43.7553	2773.5	45.4	1122.21	8.2	128143.	601.3	2172.1
6	407.1	81.1	391.875	45.4	3.22062e6	318.835	88.2649	355.967	89.3	90.7	378.687	311.256	44.7108	311.256	44.7108	2834	45.4	1064.14	8.2	121512.	614.5	2219.6
7	417.8	81.1	382,085	45.4	3.14016e6	327.215	90.5848	365.323	89.3	90.7	369.227	319.437	45.886	319,437	45.886	2908.5	45.4	1037.55	8.2	118476.	630.6	2277.9
8	432.2	81.1	435.468	45.4	3.57888e6	338.493	93.7069	377.914	89.3	90.7	420.813	330.446	47.4675	330.446	47.4675	3008.8	45.4	1182.52	8.2	135029.	652.3	2356.4
9	433.7	81.1	445.21	45.4	3.65895e6	339.668	94.0321	379.226	89.3	90.7	430.227	331.593	47.6322	331.593	47.6322	3019.2	45.4	1208.97	8.2	138050.	654.6	2364.6
10	434.2	81.1	461.032	45.4	3.78898e6	340.059	94.1405	379.663	89.3	90.7	445.517	331.976	47.6872	331.976	47.6872	3022.7	45.4	1251.94	8.2	142956.	655.4	2367.3
11	435.1	81.1	480.354	45.4	3.94778e6	340.764	94.3357	380.45	89.3	90.7	464.189	332.664	47.786	332.664	47.786	3029	45.4	1304.4	8.2	148948.	656.7	2372.2
12	437	81.1	493.156	45.4	4.05299e6	342.252	94.7476	382.111	89.3	90.7	476.56	334.116	47.9947	334.116	47.9947	3042.2	45.4	1339.17	8.2	152917.	659.6	2382.6

12	, ngin	ui (uii)													Comment:			ly converted EXFOR Web-Re			-2008/11/	03)
																		ross section				
				ANTECTO	T			l (direct)										energies bel				
							Reaction	: •Li(d,p ₁)'LI Q	value=	=4547.4keV	nPoint:1	1					R.E.Holland, , F.P.Moorin			er-Schuet	zmeiste:
				Q			M1: Inc	ident d I	M1=2.0	14101	7 E1=975.0k	еV						4004 Crea			pdated: 2	001-03-:
				X			M2: Tar	get 6Lil	M2=6.0	15123								3-LI-6(D,P)3-	-LI-7,1	PAR, DA; X4Po:	ints:370	
				1	0		M3. Fie	rtile n I	- -	07825	E3=4394.0	keV A=10	15 0° σ(A)	=2 65000				: 478.00 ping interva	1=3.0 (deg.		
				19	N.		2/2010/02/2010		A 10 12				State and a state	-2,00000								
					11		M4: Kes	idual /LI I	M ₄ =7.0	16004	6 E ₄ =1128.4	kev φ=4	5.3~			f Transfo Orig.Fi		to inverse k		ics: 2015-04 (direct kiner		:38
					4 9											-		n: 6Li(d,p)		(directo kine		
					A													amu: 2.01410	17, 6.0	015123, 1.00	7825, 7.0	160046
be	am (1)—	>		(2)											<pre>f Orig.Th f Orig.Er</pre>		105.0 145.0 .	. 975.0	D		
		-			d	5									# #	Orig.Ph	i:	61.3	46.3	-		
					1			61	:/		p ₁) ⁷	7 . :						inverse kinen n: 2H(6Li,				
						1		Ľ	_1(U.						Calc.Th		67.8		(Recoil)		
						20			\	,					##	Program	n-vers	ion: 2015/03	/17			
						4									Version:	R33						
- 22	с.м.														X4Number:	T013	84004					
	nver		an a			100 KO 2010 ZA									Source: Reaction:			+(1977), Jou:	r. Phys	sical Review	, Part C,	Nuclear
F	lesult	: inve	rse-kine	matics	data pres	ented in R	33 format								Reaction: 2H(6Li,pl)7Li Distribution: Energy							
															Sigfactors: 1.0, 0.0							
						de,					data prese			ar	Enfactors: 1.0, 0.0, 0.0, 0.0 Units: mb							
						Cctor-	Reaction	Reaction: ² H(⁶ Li,p ₁) ⁷ Li Qvalue=4547.4keV nPoint:11					Composition:									
3 M1: I						M1: Inc	ident <mark>6Li</mark> I	M1=6.0	15123	E1=2911.8	lkeV			Masses: Zeds:			1.0, 7.0 1.0, 3.0					
					9		M2: Tar	M2: Target 2H M2=2.0141017				Qvalue: 4547.4, 0.00, 0.00, 0.00, 0.00										
					/			State 17194			E3=5446.3	kev A-6	3 1º (A)-	3 46672	Theta:	63.1	L					
					1						_			0,400721	433.0)43 (.0000	0 0.063339	6 (0.00000		
					/		M4: Kes	idual 7LI I	M ₄ =7.0	16004	6 E ₄ =2013.0	ikev φ=3	5.8~		543.5		.0000			0.00000		
					69										785.4 794.4		0.0000			0.00000 0.00000		
he	am (2	2		6)										1093.	06 0	.0000	0 0.69863	7 (0.00000		
1963	Sam C	5	<u> </u>		A d	ý									1102. 1702.		0.0000			0.00000 0.00000		
					1										2009.		.0000			0.00000		
						10									2308.		.0000			0.00000		
						(4)									2613. 2911.		0.0000			0.00000 0.00000		
-1 0	Calcul	ations				\sim									EndData:							
Original (lab.): ⁶ Li(d,p ₁) ⁷ Li Q=4547.4keV Center of mass										ľ		Inve	rse kir	nametics								
#	E1,	<u>θ</u> °	σ(θ),	φ	σ(φ)	E ₃	E4	E'cm	θ'	φ'	σ'(θ')	E'1	E'2	E'3	E'4	E2"	φ"	σ"(φ")	θ"	σ"(θ")	E3"	E4"
1	kev 145		mb/sr 0.058	61.2	0.657303	3006 7	605 702	109 627	106.0	72.1	0.0590504	91 3795	27 2499	4071 31	584.816	433	67.9	0.0633396	67	0.0831837	4348.1	622.2
2	143		0.038		0.99946			11.	Contraction of the local division of the loc		0.0918301	and the second se		the state of the s			67	0.0995302			4415.3	
2	263	and the state of the second	0.31	1.00	3.32075	And the second second		197.027			0.317601		Contraction of the second second	CONFIGURATION OF THE	595.919	785.5		0.351321	56.6		4555	777.9
4	265	and the state of the	0.31		3.42385	11111111		1111111111	ter and a second		0.327892	149.287	and the second se		596.201	794.4	-	0.351321		0.684576	4560	781.8
4	200	105	0.52	57.5	3.42305	4040.70	/00.03/	199.2/5	107.5	12.5	0.327092	149.20/	49.90/4	4130.4/	390.201	794.4	05.3	0.30290	50.4	0.004376	4300	701.0

821.397 274.19 107.9 72.1 0.617389 205.411 68.7796 4215.98 605.611 1093.1 64

547.2

4093.39 823.006 276.438 107.9 72.1 0.627752 207.094 69.3434 4217.94 605.893 1102 64

4189.66 927.739 427.018 108.6 71.4 1.41956

4240.65 979.746 504.18 108.8 71.2 1.76676

4290.89 1029.51 579.096 109.1 70.9 1.88606

4342.73 1079.67 655.509 109.3 70.7 1.76542

4394.01 1128.39 730.425 109.5 70.5 2.77457

0.698637

0.710805

319.902 107.116 4349.61 624.807 1702.3 61.7 1.66925

377.709 126.472 4417.08 634.499 2009.9 60.8 2.11322

433.832 145.264 4482.59 643.908 2308.6 59.9 2.2909

491.077 164.432 4549.4 653.506 2613.2 59.2 2.17612

183.224 4614.91 662.916 2911.8 58.5 3.46672

50.7 1.72735

50.5 1.77102

43 6.64402

40.3 10.3753

38.1 13.5864

36.2 15.4581

34.7 29.1078

4723.5 916.9

4728.3 921.1

5041.1 1208.6

5196.4 1360.9

5494.9 1665.7

5640.4 1818.9

5345

1510.9

5 366 105 0.6

6 369 105 0.61

7 570 105 1.37

8 673 105 1.7

10 875 105 1.69

11 975 105 2.65

773 105 1.81

9

54.8 6.20191 4092.

54.7 6.29947

49.6 16.3212

48.4 17.0642

47.2 15.6695

46.3 24.2084

51.1 13.434

EXFOR data renormalization

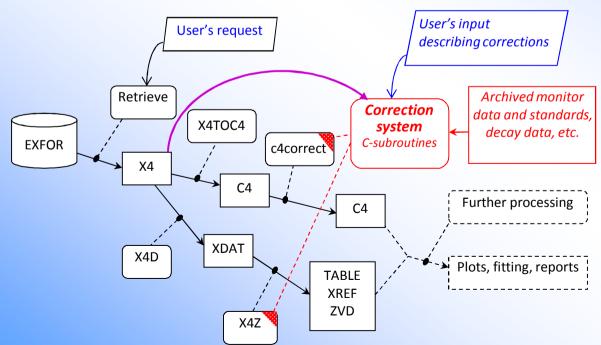
EXFOR data correction system (re-normalization system)

Main ideas:

- 1) to re-normalize data using old monitors and new standards
- 2) to re-normalize data using modern decay data
- to create a convenient tool for data modifications: multiply data to a factor, correct wrong units, set up uncertainties, ignore part of a data set, recalculate data using isotope abundances, etc.

We DO NOT change EXFOR data - we re-normalize output from EXFOR system

Final goals:


- 1) to re-normalize data from EXFOR automatically (using EXFOR information)
- 2) to collect experts' corrections to a database
- 3) to preserve and possibly re-use evaluators knowledge
- 4) to develop Web system offering options to use automatic, experts' and user's corrections
- 5) to generate and distribute renormalized data of whole EXFOR database

Correction System: Concept

• We **DO NOT** change **EXFOR** data.

We re-normalize output from EXFOR system, i.e. we modify data extracted from EXFOR:

- computational format C4
- TABLE, XREF (NNDC computational formats)
- XDAT (intermediate format used for plotting) Results can be plotted as:
 - Quick plots
 - Advanced plots ... + comparison to evaluated data (ENDF)

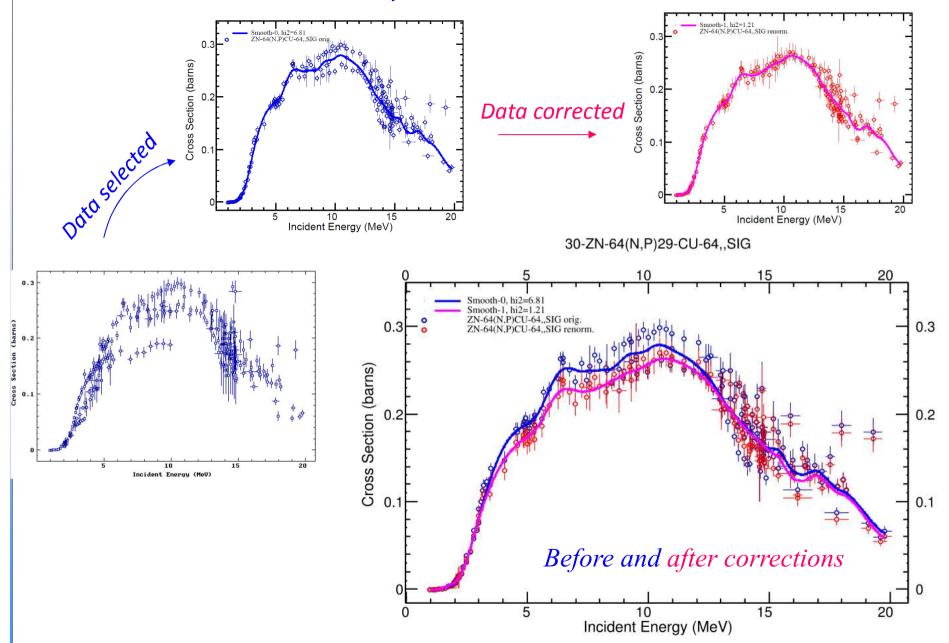
Software structure and data flow

"Manual" and "automatic" corrections

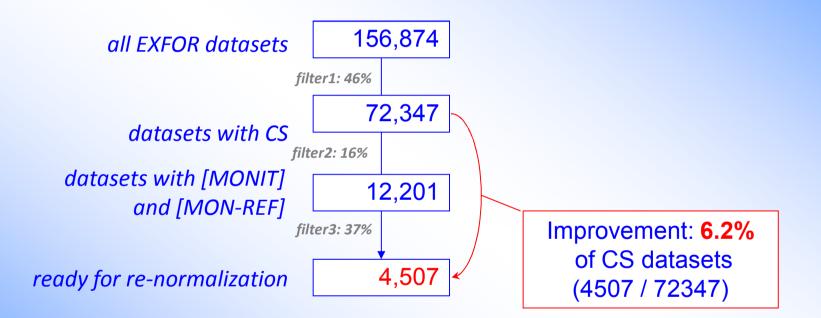
"Manual" corrections are based user's knowledge and experience – therefore can include subjective judgment.

We are going to collect database of experts' corrections.

"Automatic" corrections are based on the information given in EXFOR file: keywords MONITOR and MONIT-REF, monitor data in the DATA and COMMON sections.


This method is objective.

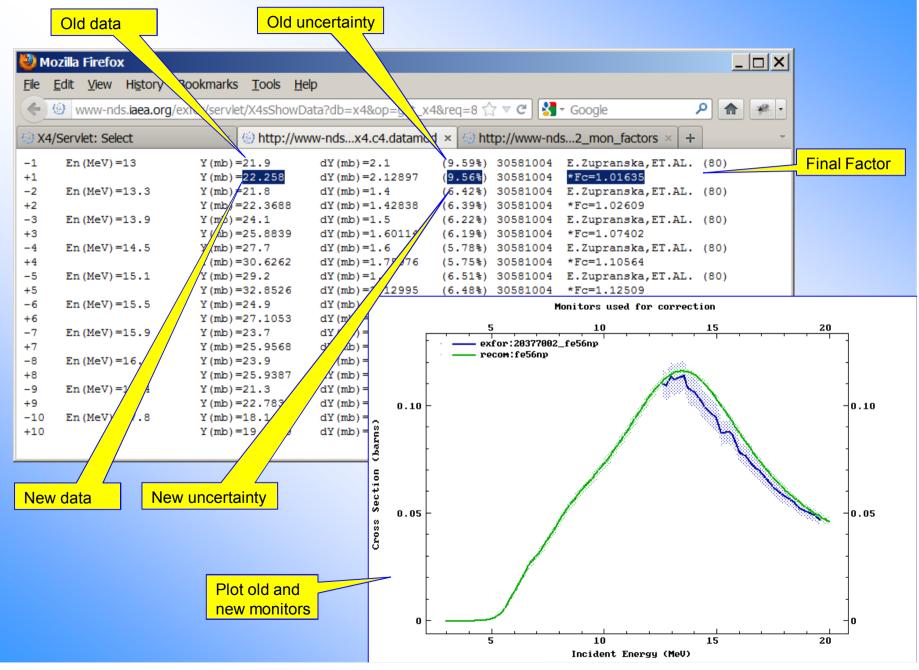
It needs "clever" EXFOR software.


Both methods need:

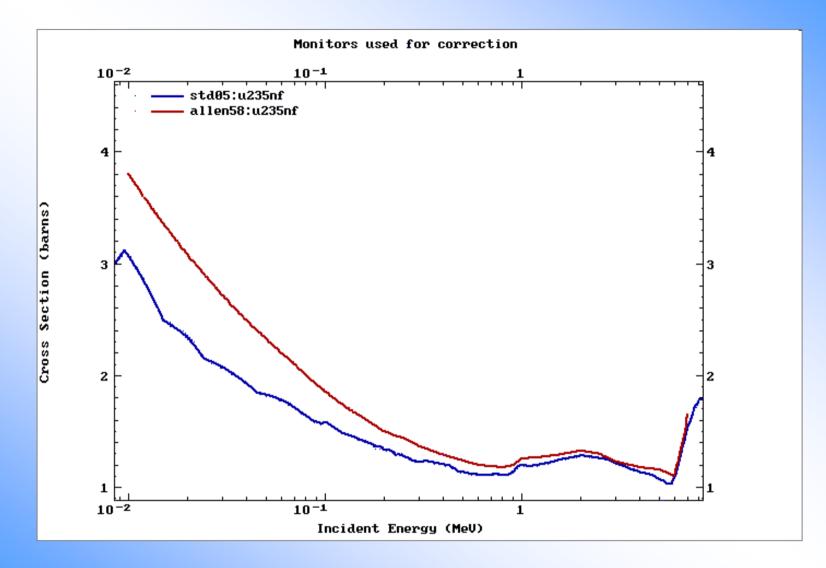
- archive of old monitors
- library of "recommended" monitors (standards)
- software, database, information, Web support
- participation of nuclear data experts

Example of "manual" corrections results by K.Zolotarev, 2011

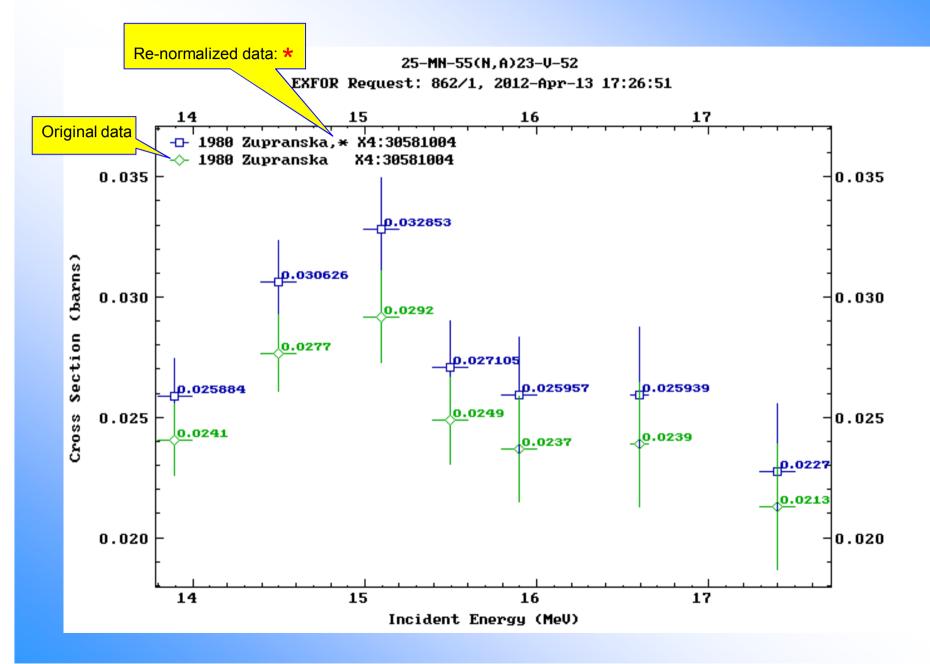
Available automatic EXFOR data correction /as of 2014/

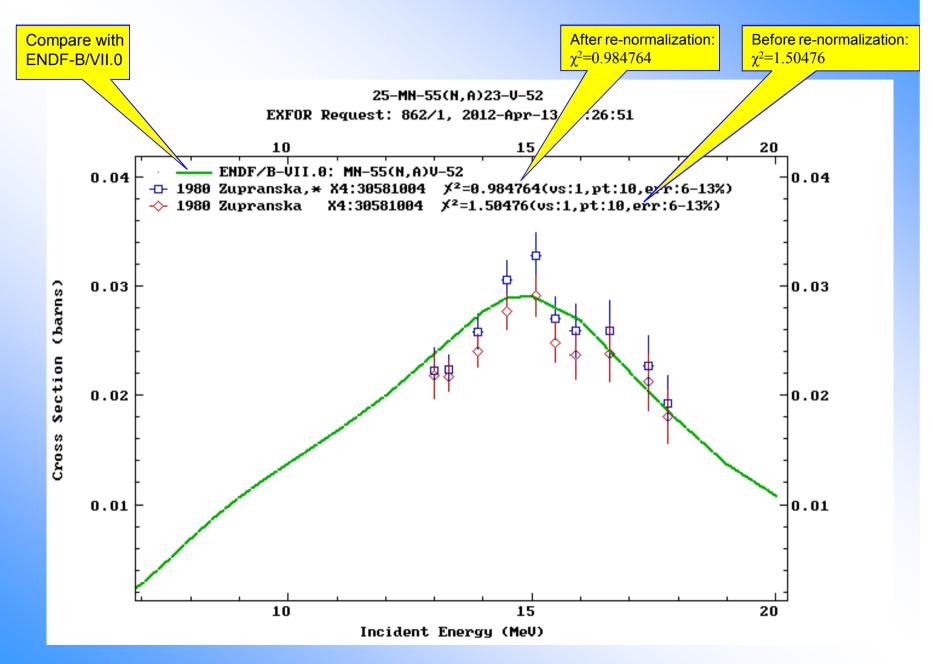

Apply automatic data re-normalization

	🕙 X4/Servlet: Select - Mozilla Firefo	x												
	File Edit View History Bookmarks	Tools Help												
		N/ArCount C			습 ⊽ C 🛃 - Google	۰ 🖈 🍳								
	www-nds.iaea.org/exfor/servlet/X4sSearch5 ☆ ♥ ♥ 🛐 • Google 👂 🏫													
	St4/Servlet: Select +													
	Request #862 Access-Level=2	Users' correcti	· · ·			-								
	Results: Reactions: 2 Datasets: 26	help, documer	itation											
	Data Selection													
	Retrieve Selected CUnselected	i C g set												
	Output: VEXFOR EXFOR+ V													
Apply	Plot: Quick-plot (cross-section			C5 and	Converting ratios to cross sectio	ns using [IAFA-								
	standards,2006]	() () Hardineed piece	[non co] doingi	und and	Contenting ratios to cross social	no doing taten								
corrections	Narrow Energy (optional), eV: Min	Max:												
	▼ Apply(7A) [×] Data re-normalization (for advanced users, resu	Its in: C4, TAB and	i Plots)										
	-													
	n Display	Year Author-1	Energy range, eV	Points	Reference	Accession#P NSR-Key								
	🔁 🤁 1) 🔳 🔎 25-MN-55 (N, A) 23-V-52	,,SIG C4: MF3 MT107												
	Quantity: [CS] Cross section													
	1 Info X4 X4+ X4± T4 Cov		1.61e7 2.03e7	5	[pdf]+ J,NSE,134, (2),171,2000	22414016 2000FE01								
	2 Info X4 X4+ X4± T4 Cov		1.35e7 1.48e7	8	+ R,RI-252,199905	41240011								
	3 Info X4 X4+ X4± T4 Cov		1.41e7	1	+ R,RI-252,199905	41298010								
	4 Info X4 X4+ X4± T4 Cov		6.33e6 1.20e7	7	[pdf]+ J, PR/C, 49, 266, 1994	22292007 1994B001								
Auto	5 nfo X4 X4+ X4± T4 Cov		1.47e7	1	[pdf]+ R, INDC (NDS) -286, 131, 1993	31496007								
corrections	6 A Info X4 X4+ X4± T4 Cov		1.46e7	1	+ C, 91JUELIC, 376, 199105	22338043								
	7 info X4 X4+ X4± T4 Cov 8 info X4 X4+ X4± T4 Cov		1.47e7	1	+ R, GKSS-85-E-11, 1985	21936008								
is possible	8 Info X4 X4+ X4± T4 Cov f 9 Info X4 X4+ X4± T4 Cov		2.96e6 1.47e7	2	[pdf]+ J,CZJ/B,34,30,1984	30652003 1984FL01 21893003								
	10 Info X4 X4+ X4± T4 Cov		1.46e7	1	[pdf]+ J,NIM,171,281,80 + T,NGOC,1980	30562012								
	A 11 A Info X4 X4+ X4± T4 Cov		1.30e7 1.78e7	10	<pre>[pdf]+ J,APP/B,11,853,198011</pre>	30581004 1980ZU02								
<u></u>	12 A Info X4 X4+ X4± T4 Cov	3	1.46e7	1	+ P, INR-1773/I/PL/A, 16, 1978	30479006								
	13 Info X4 X4+ X4± T4 Cov		1.47e7	1	+ J,VAT/F,1,(18),15,1977	41306003								
	14 A Info X4 X4+ X4± T4 Cov		1.47e7	1	[pdf]+ J,ZP,199,275,6701	21345003								
	15 Info X4 X4+ X4± T4 Cov		1.48e7	1	[pdf] + J, APA, 20, 304, 6508	20030003 1965FR18								
	* 16 Info X4 X4+ X4± T4 Cov		1.26e7 1.88e7	10	[pdf]+ J,NP,63,438,6503	20887007 19658042								
	17 A Info X4 X4+ X4± T4 Cov		1.48e7	1	[pdf]+ J,NP,69,153,196507	31316015								
	18 🔽 Info X4 X4+ X4± T4 Cov	1965 A.Peil	1.45e7	1	[pdf]+ J,NP,66,419,196505	31469006								
	19 🗂 Info X4 X4+ X4± T4 Cov	1962 F.Gabbard+	1.24e7 1.77e7	13	[pdf]+ J, PR, 128, 1276, 62	11494008 1962GA18								
	20 🔽 Info X4 X4+ X4± T4 Cov	1961 J.Nix+	1.48e7	1	+ P,A-ARK-60,6,196101	11684002								
	21 A Info X4 X4+ X4± T4 Cov	1960 C.S.Khurana+	1.40e7	1	+ C,60WALTAIR,,297,196002	30403019								
	22 A Info X4 X4+ X4± T4 Cov		1.45e7	1	[pdf]+ J,AUJ,13,186,1960	31039007								
	23 T Info X4 X4+ X4± T4 Cov		1.48e7	1	[pdf]+ J, JPJ, 13, 325, 5804	20283009 1958KU76								
	24 T Info X4 X4+ X4± T4 Cov		1.45e7	1	[pdf]+ J,CJP,31,267,1953	11274030 1956PA26								
	(2) 1 P 25-MN-55(N,A)23-V-52	,,SIG,,SPA C4: MF=3	MT=?											
	Quantity: [CS] Cross section													
	25 T Info X4 X4+ X4± T4 Cov		2.25e7	1	[pdf]+ J,NP/A,329,63,197910	21009015 1979WU11								
	26 Info X4 X4+ X4± T4 Cov	1965 J.E.Strain+	1.40e7	1	[pdf]+ R,ORNL-3672,196501	11263043								
	A : Autmatic data re-normalization is	available												

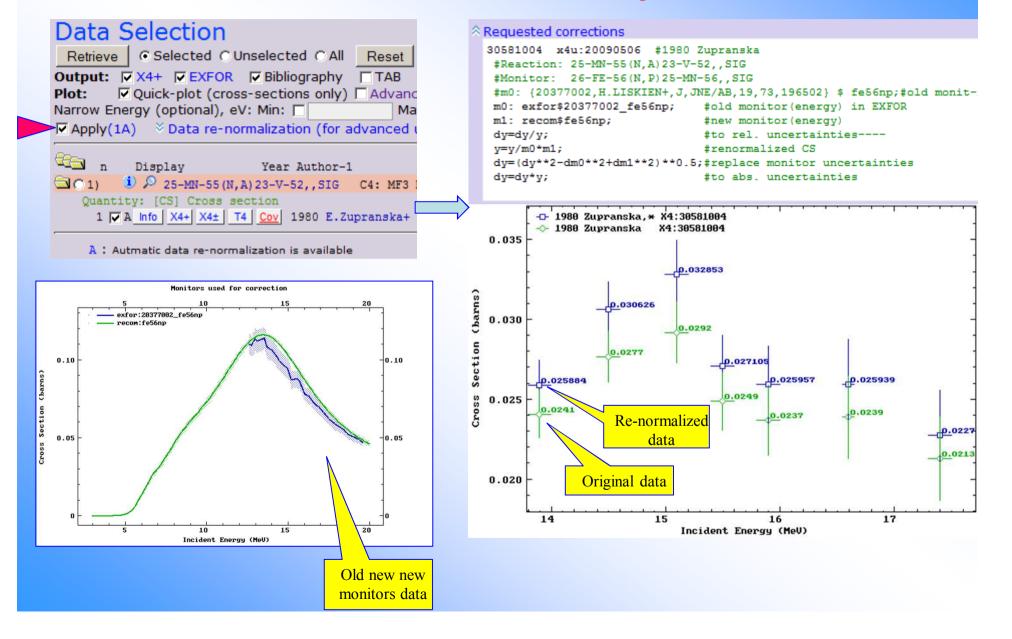

Automatic data re-normalization: simple plot

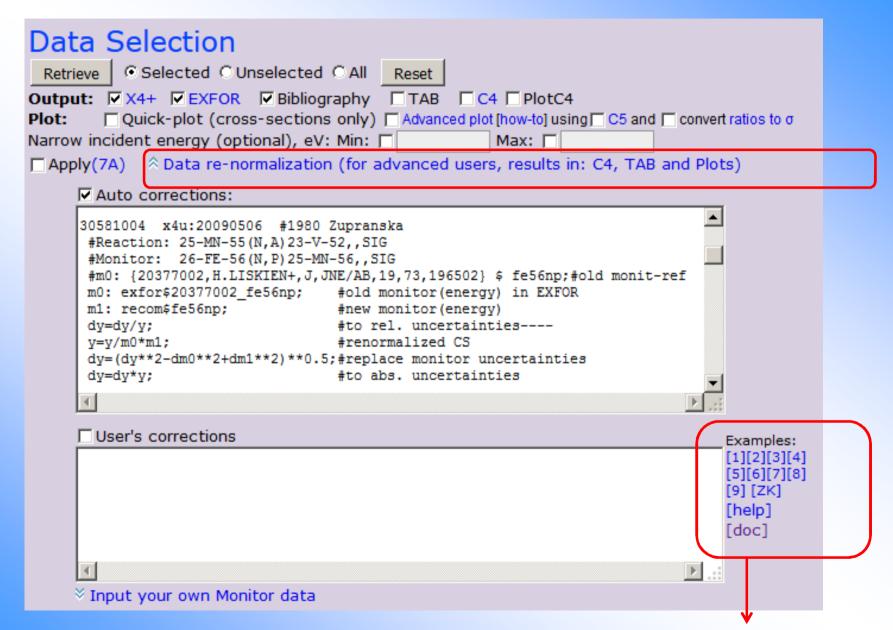
	<u>Eile E</u> dit <u>V</u>	iew History Bookmarks Tools Help											
		iew history bookmarks tools thep											
	🗲 🙆 www	w-nds. iaea.org /exfor/servlet/X4sMakeX4	☆ マ C Sociel										
3	⊗ X4/Servlet: Select +												
	Utput Data												
T	Format	Data (Siz	ize)										
1	EXFOR	Text (7Kb) ZIP (3Kb) Generate: X4± Test:	20591004 v4v.20000506 #1090 Zupronoko										
ſ	Bibliography	html (4Kb) BibTeX (2Kb)	<pre>30581004 x4u:20090506 #1980 Zupranska #Reaction: 25-MN-55(N,A)23-V-52,,SIG #Monitor: 26-FE-56(N,P)25-MN-56,,SIG #m0: {20377002,H.LISKIEN+,J,JNE/AB,19,73,196502} \$ fe56np;#old monit-ref m0: exfor\$20377002 fe56np; #old monitor(energy) in EXFOR</pre>										
	Computationa	d)											
	C4	C4 (2Kb) C4.ZIP (1Kb) LST (128Kb)											
	Advanced D	Notting: LST (1Kb)											
		rimental data for plotting	m1: recom\$fe56np; #new monitor(energy)										
	Go to	Quantity type #Plots	dy=dy/y; #to rel. uncertainties										
	σ(Ε)	SIG Cross section data 1	y=y/m0*m1; #renormalized CS										
Applied		t evaluated data	dy=(dy**2-dm0**2+dm1**2)**0.5;#replace monitor uncertainties										
corrections	ENDF	Retrieve evaluated data and plot	dy=dy*y; #to abs. uncertainties										
	Requested	corrections											
	<pre>#m0: {203 m0: exfor m1: recom dy=dy/y; y=y/m0*m1</pre>	<pre>#to rel. uncertai</pre>	rgy) in EXFOR rgy) inties uncertainties										
Check	Correction (protocol											
Monitors	Applied co	rrections. Datasets: 1 30581004 Ref:E.Zupranska,ET.AL. (80) Correct											
	30581004 X	4U:20090506; M0:exfor\$20377002_fe56np; M1	11:recom\$fe56np; dY=dY <u>(Y: Y=Y/M0*M1: tmp0=</u> dY^2-dM0^2+dM1^2; dY=tmp0^0.5; dY=dY*Y;										
	See used r	nonitors: [plot]	Check data										
	See: [selecte	d] [unselected] datasets [corrections] [datasets [corrections] [datasets [corrections] [datasets]											
Plot result of		EXFOR Request: 862/1, 2	2012-Apr-13 17:10:16										
corrections	5.0 ⁻⁰	13 14 15	16 17 18 I 25-MN-55(N,A)23-V-52,,SIG										
	(barns)		0.030										


Automatic data re-normalization: data checking


Checking used monitors

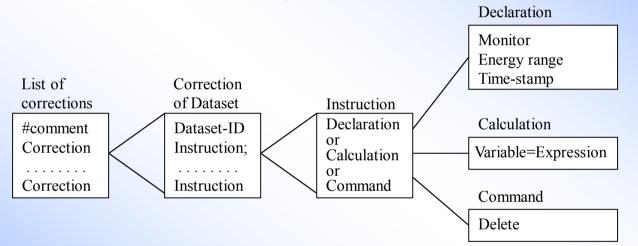
Automatic data re-normalization: common plot


Automatic data renormalization: comparing to ENDF


Corrected C4 file

Ϋ м	lozilla Fi	efox			ж. 		_ 🗆 🗙
<u>F</u> ile	<u>E</u> dit <u>V</u>	iew Hi <u>s</u> tory	<u>B</u> ookmarks	Tools <u>H</u> elp			
🗌 ht	ttp://161	.5.1=X4R9	32_C4.C4 ×) http://161.5hkPen=1&MF=30 × 🔅 http://	/161.5.1X4R932_x4.zvd × +		~
	1 7919 1 7919		145000.0 200000.0	0.277017 2.2161-2 0.247612 1.9809-2		A.E.Johnsrud*,ET.AL.(59) A.E.Johnsrud*,ET.AL.(59)	
	1 7919	7 3 102	245000.0	0.236903 1.8952-2		A.E.Johnsrud*,ET.AL.(59)	11675 26
	1 7919 1 7919		305000.0 400000.0	0.228891 1.8311-2 0.181638 1.4531-2		A.E.Johnsrud*, ET.AL. (59) A.E.Johnsrud*, ET.AL. (59)	
	1 7919	7 3 102	445000.0	0.146107 1.1689-2		A.E.Johnsrud*,ET.AL.(59)	11675 26
	1 7919 1 7919		495000.0 520000.0	0.132444 1.0595-2 0.14657 1.1726-2		A.E.Johnsrud*, ET.AL. (59) A.E.Johnsrud*, ET.AL. (59)	
	1 7919 1 7919		550000.0 595000.0	0.137886 1.1031-2 0.115702 9.2562-3		A.E.Johnsrud*, ET.AL. (59) A.E.Johnsrud*, ET.AL. (59)	11675 26
	1 7919	7 3 102	800000.0	9.8683-2 7.8946-3		A.E.Johnsrud*, ET.AL. (59)	11675 26
	1 7919 1 7919		1000000. 1190000.	8.5288-2 6.8231-3 9.0501-2 7.2401-3		A.E.Johnsrud*, ET.AL. (59) A.E.Johnsrud*, ET.AL. (59)	
	1 7919 1 7919		1400000. 1400000.	7.8014-2 6.2411-3 9.1334-2 7.3067-3		A.E.Johnsrud*, ET.AL. (59) A.E.Johnsrud*, ET.AL. (59)	11675 26
	1 7919		1400000.	8.5625-2 6.8500-3		A.E.Johnsrud*,ET.AL.(59)	11675 26
	1 7919 1 7919		1800000. 2200000.	6.4448-2 5.1558-3 4.5408-2 3.6327-3		A.E.Johnsrud*,ET.AL.(59) A.E.Johnsrud*,ET.AL.(59)	
	1 7919	7 3 102	2550000.	4.3207-2 3.4565-3		A.E.Johnsrud*,ET.AL.(59)	11675 26
	1 7919 1 7919		4800000. 5400000.	1.3540-2 1.0832-3 1.4246-2 1.1397-3		A.E.Johnsrud*,ET.AL.(59) A.E.Johnsrud*,ET.AL.(59)	
						1	
					*	Flag: corrected	data
						~	

Summary: automatic EXFOR data renormalization on Web by one click


Add/edit corrections. Get help and manual

Documentation: www-nds.iaea.org/exfor/x4guide/x4corrections/x4corrections.pdf

Corrections. Structure and syntax.

Corrections (data modifications) are described in a text file with following structure

Datasets from EXFOR are identified by the DatasetID := SubentryPointer

All operations described in the list of corrections will be applied to the current dataset.

Corrections. First examples

40274002A y=y*0.85

This means: take data from Subentry 40274.002 having Pointer=<A>, and for every data point perform action: multiply data value (y) by factor 0.85

10221039 dSys=y*0.02;

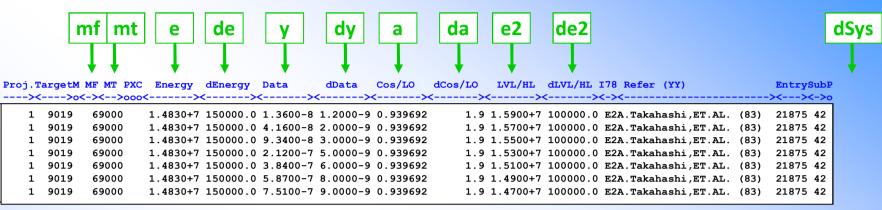
This means: set systematic uncertainties equal to 2% of data for Subentry 10221039

10221039 m0:endfb4 \$ u235nf; #old monitor m1:iaeastd2006 \$ u235nf; #new monitor dy=dy/y; #abs. to relative uncertainty y=y/m0*m1; #re-normalize data value dy=dy**2 -(dm0/m0)**2 +(dm1/m1)**2; #re-calc.errors dy=dy**0.5*y; #back to abs. uncertainty

Monitor data used for measurements: CS from ENDF-B/IV, reaction U-235(n,f). We define for renormalization old and new monitors: data from ENDF-B/IV, U-235(n,f) and modern data from IAEA Standards-2006 library; re-calculate data values and uncertainty using old and new monitors for every data point.

Corrections. Declarations.

Energy dependent monitor from the Archive.


Energy de	Energy dependent monitor must be "declared" before first time used.									
synta	ax:	m0:Library\$Reaction;								
		the same for m1,m2,m3,,m7								
exan	nple:	m0:allen58\$u235nf;								
		m1:std05\$u235nf;								
Use value interpolated for the current energy in the variable m1 and dm1										
exan	nple:	y=y*m1/m0;								

Energy dependent monitor from EXFOR file.

Energy dependent monitor must be "declared" before first time used. syntax1: m0:[EN, MONIT]; where EN and MONIT are headers of EXFOR data columns syntax2: m0:[EN-MIN ! EN-MAX, MONIT]; energy value will be average between two columns: EN-MIN and EN-MAX syntax3: m0:[EN, MONIT, MONIT-ERR]; to describe column with monitor uncertainties (after that, dm0 will have a value) syntax4: m0:[EN, MONIT:2]; to describe column having pointer Use value interpolated for the current energy in the variable m0 and dm0 example: y=y*m1/m0;

After you declare monitor (as m0, m1, etc.), you can use variable m0 (or m1, etc.) in your expressions Example: y=y*m1/m0; dy=((dy/y)**2 -(dm0/m0)**2 +(dm1/m1)**2)**0.5*y;

Corrections. Variables. Data.

COLUMNS		VARIABLE	MEANING
1-5	Prj		Projectile ZA (e.g. neutron =1, proton =1001)
6- 11	Targ		Target ZA (e.g. 26-Fe-56 = 26056)
12	Μ		Target metastable state (e.g. 26-FE-56m = M)
13-15	MF	MF	MF (ENDF conventions, plus additions)
16- 19	MT	MT	MT (ENDF conventions, plus additions)
20	Р		Product metastable state (e.g. 26-FE-56M = M)
21	Х		EXFOR status
22	С		Center-of-mass flag (C=center-of-mass, blank=lab)
23-94			8 data fields (each in E9.3 format)
23- 31	Energy	E	Projectile incident energy
32-40	dEnergy	dE	Projectile incident energy uncertainty
41-49	Data	Y	Data, e.g., cross section, angular distribution, etc.
50- 58	dData	dY	Data uncertainty
59-67	Cos/LO	Α	Cosine or legendre order
68-76	dCos/LO	dA	Cosine uncertainty
77-85	LVL/HL	E2	Identified by columns 95-97 (e.g., level E, half-life)
86-94	dLVL/HL	dE2	Identified by columns 95-97 (e.g., level E, uncertainty)
95-97	178		Identification of data fields 7 and 8 (e.g., LVL=level, HL=half-life, etc.).
98-122	Refer		Reference (first author and year)
123-127	ENTRY		EXFOR accession number
128-130	Sub		sub-accession number
131	Р		Multi-dimension table flag (Pointer)
132-140	dSys	dSys	Multi-dimension table flag (Pointer)
141-149	dStat	dStat	Multi-dimension table flag (Pointer)
		i	5. ,

C4 file

Corrections. Other variables and constants.

Numerical values

These values can be used in expressions in the format of REAL numbers in Fortran. It is assumed that values without units are presented in "basic" units (e.g. 20 means 20eV). Expressions allow also usage of units (which must be presented in special working dictionary), then units will be replaced by factor, e.g. 2hr will be replaced by (2*3600)., 2% will be replaced by (2*0.01), 20kev will be replaced by (20*1e3).

Intermediate variables.

syntax: a0, a1, a2, a3, a4, a5, a6, a7, c0, c1, c2, c3, c4, c5, c6, Fc default value=0

Monitor point.

Monitor value for given point (e.g. thermal cross section) can be used in any expression: syntax: Library\$Reaction[Energy] example: a1=iaea05\$au197ng[0.0253]; It is also possible to use energy value from COMMON block: a1=iaea05\$au197ng[EN-NRM];

Monitor point from EXFOR.

Single monitor value is usually given in EXFOR file in COMMON block. This value can be used in an expression referring to Header of the column in the COMMON block by using [Header], e.g.

a0=[MONIT1];

So, renormalization by single point can also be described without using intermediate variables, e.g.: y = y * iaea05 au 197ng[0.0253] / [MONIT 1];

Other constants and operations.

Abundance

When necessary, cross sections can be corrected by using natural abundance of isotopes and cross section of competing reaction. Abundance is coded as abu[isotope], can be used in expressions and will be replaced by value taken from internal library. For example:

20388002 m2:rrdf07\$ni61nnp; y = y - abu[ni61]/abu[ni60]*m2;

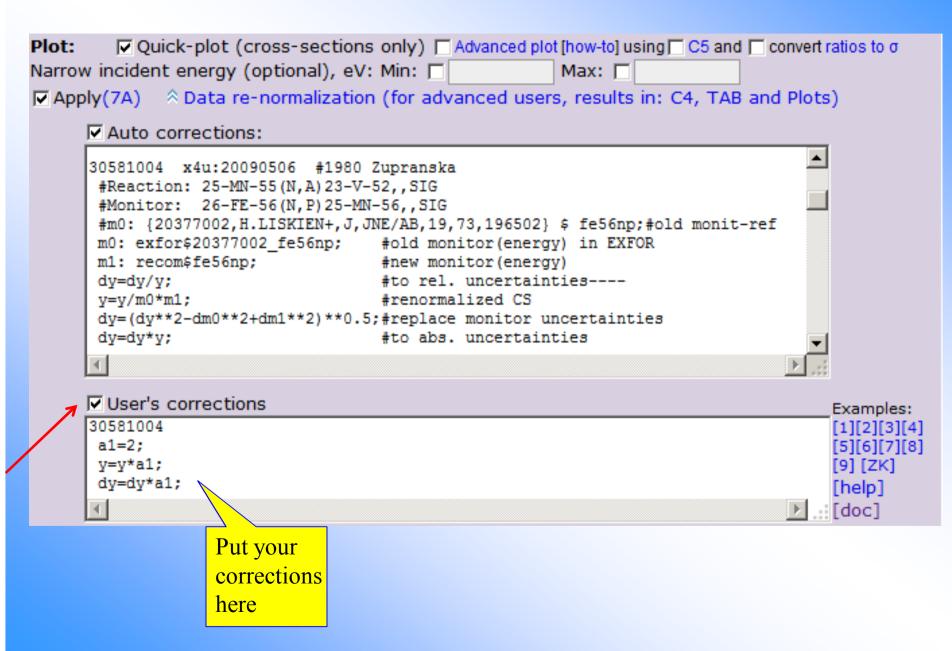
Half-life

If necessary (for long-lived residuals), cross sections can be corrected by using new half-life value, which is coded as t12[isotope]. It can be used in expressions and will be replaced by value taken from internal library. For example:

30449003 y=y*t12[bi207]/38yr; # converted to y=y*32.9yr/38yr;

Operations.

Traditional operations:


+ - * / **

parentheses () change default order of operations

Calculations

syntax: variable=expression; Traditional for programming languages

Applying your corrections

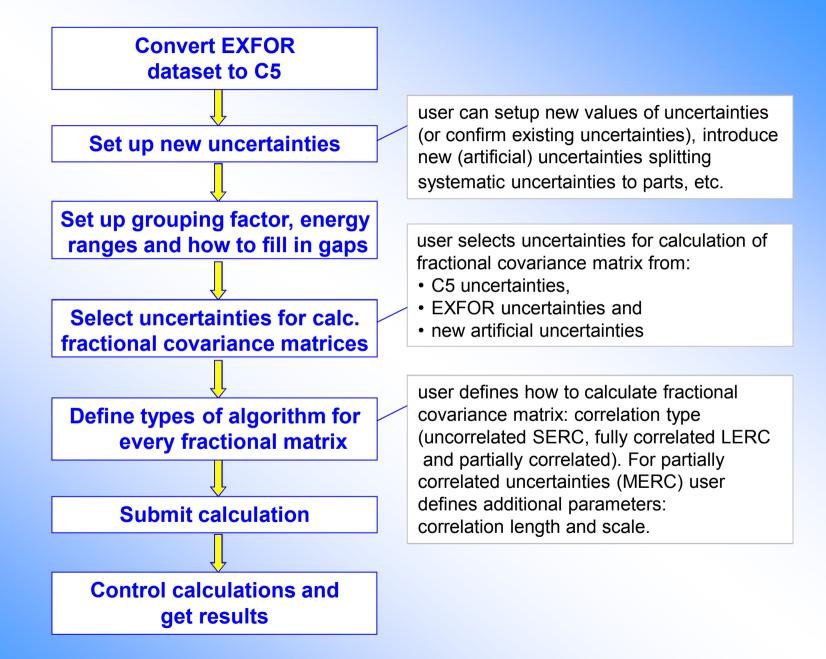
Constructing covariance matrix from EXFOR uncertainties

You can do this on Web using interactive tool and non-interactive software. In order to apply these methods for your data you should input your data to the EXFOR system.

http://www.epj-conferences.org/articles/epjconf/pdf/2012/09/epjconf_ncsc2_00009.pdf

Motivation

"Technical Meeting Neutron Cross Section Covariances, IAEA Headquarters Vienna, Austria 27-30 September 2010":


8. Documentation and instructions to authors of experimental data on <u>how to prepare</u> <u>uncertainty information should be drafted</u> and made easily accessible (e.g. on the IAEA website). Instructions should include practical examples.

9. The EXFOR formats should be flexible enough to accommodate information as provided by the experimenters. The EXFOR format should be extended to accommodate the full explicit covariance matrix, if provided by the authors or, alternatively, data required by a <u>recipe for</u> <u>constructing covariance matrices based on providing partial error</u> and correlation components.

10. Authors of experimental data <u>are urged to provide partial components of the</u> <u>uncertainties</u> and correlation information as needed to generate the full covariance matrix.

14. The present computational format (C4) should be extended to accommodate partial uncertainty information consistent with that available in EXFOR. In addition, a <u>new format</u> should be developed, capable of accommodating experimental covariance information.

Interactive Web tool. How it works

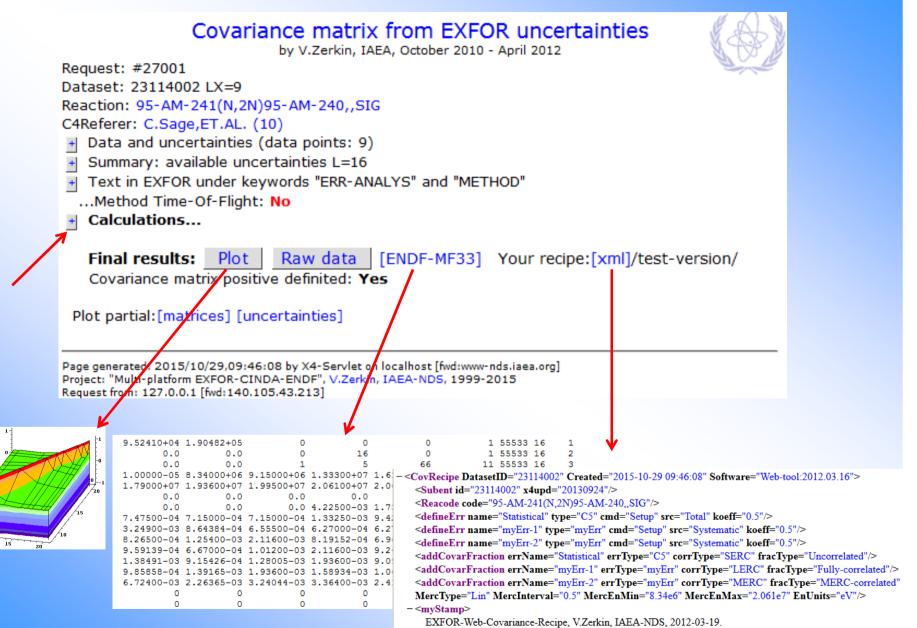
Calling interactive Web tool

Data	Sel	ection											
Retrieve	0.9	elected OUnsele	cted	OA	II R	eset							
		+ EXFOR B											
Plot:		ck-plot (cross-see									hoe 30	Convert ratios to a	
		energy (optional				Auvani	Leu più	Max:	-		Jo anu	Convent ratios to o	
								1		TAR		N = + = 1	
	✓ Dat	a re-normalization	1 (10	radv	ance	a user	s, res	suits i	n: C4,	, TAE	and F	nots)	
😋 n	Dis	play Ye	ear A	utho	r-1		Ene	rgy r	ange,	eV B	oints	Reference	Subentry#P NSR-Key
	🤨 🔎	95-AM-241 (N, 2N)	95-AM	-240	,,SIG	C4:							-
Quant		[CS] Cross section		<u> </u>									
1 [+	Info X4+ X4± T4	Cov	2010) C.Sa	ige+	8.	34e6	2.00	5e7	9 +	J,PR/C,81,064604,2010	23114002 2010SA15
			Т										
			•										
		Constr	ucti	ng a								R uncertainties 🖉 🦂	20 M
		Request: #27001			DY \	v.Zerki	n, IAEA	, Octob	er 2010) - Apr	1 2012	A C	2 B
		Dataset: 23114002	IX=	9 50	t defa	ult: [1	1 [2]	Exam	nles: [11 [2	$1 \rightarrow \rightarrow$	Calculate matrix	
		+ Restore your pr						Exam	picor (-1 [-		Calculate matrix	
		Reaction: 95-AM-2											
		C4Referer: C.Sage,											
		 Data and uncer 	tainti	es (d	ata po	ints: 9))						
		Data											
		No.	1	2	3	4	5	6	7	8	9		
		Energy (eV) *0.001	8340.	9150.	13330.	16100.	17160.	17900.	19360.	19950	. 20610.		
		Data (B) *1000.	96.8	162.9	241.8	152.4	116.1	105.7	89.5	102.1	77.9		
		Uncertainties def	ined i	in C5	(C4++	+)							
		Total (%)	6.5	5.7	4.6	4.6	4.4	4.4	8.2	5.8	8.8		
		Statistical (%) empty		-	-	-	-	-	-	-	-		
		Systematic (%)	6.4	5.6	4.5	4.5	4.3	4.3	8.1	5.7	8.8		
		Uncertainties giv	en in	EXFO	R								
		ERR-T (%)	6.5	5.7	4.6	4.6	4.4	4.4	8.2	5.8	8.8		
		ERR-1 (%)	5.0	4.0	2.5	2.1	1.5	1.3	6.3	1.4	5.7		

Step-1. Use default-2 and [Submit]

ERR-ANALY		Total uncertainty	
	(MONIT-ERR,,	,,P) 27Al(n,a) standard x-section	(1.6-5.4%)
	(ERR-1,,,U)	Counting of 240Am activity	(1.4-6.3%)
	(ERR-2,,,U)	Counting of 24Na activity	(0.7-2.0%)
	(ERR-3,,,F)	Intensity of 240Am gamma line	(1.2%)
	(ERR-4,,,U)	Number of 27Al in sample	(0.1%)
	(ERR-5,,,P)	Number of 241Am in sample	(0.3%)
	(ERR-6,,,F)	24Na/240Am efficiency ratio	(3.0%)
	(ERR-7,,,F)	Correction for decay of 240Am	(0.4-0.9%)
	(ERR-8,,,U)	Correction for secondary neutron	(<1.4%)
#/SUBENT	23114002		

...Method Time-Of-Flight: No


-| Set/Add uncertainties (%) More myErr: [+] [-]

Name	Status	Set all values to	Set if empty	Comment
Total	full	% of [Data]		[myErr-*] are uncertainties defined
Statistical	empty	50 % of Total		by user; they can be used e.g. to split
Systematic	full	Auto 💌		[Systematic] uncertainty to components: a) fully correlated and
myErr-1	empty	50 % of Systematic 💌		b) medium energy range correlated
myErr-2	empty	50 % of Systematic 💌		or for using uncertainties given in free EXFOR text under [ERR-ANALYS]
myErr-3	empty	2 % of Data		

Input parameters and run calculation

Rec	uest Submit	Reset Submit in new Window 🗆 Include uncertainty arrays to the Recipe-report
Grou	pping Factor: 1 da	ta points (required if final covariance matrix is too large)
No.	Name	Apply Correlation-type Parameters 🗆 Use energy intervals (default: 8.34 20.61 MeV)
1	Statistical 💌	Uncorrelated
2	Systematic 💌	Fully-correlated
3	myErr-1	Fully-correlated
4	myErr-2	MERC-correlated 🔽 Corr-Length: 0.5 of the Range(eV): 8.34e6 to 2.061e. Scale: Lin 💌 >>
5	myErr-3	MERC-correlated 🔽 Corr-Length: 0.5 of the Range(eV): 8.34e6 to 2.061e. Scale: Lin 💌 >>

Step-2. Check calculations, call plot, recipe, etc.

</myStamp> </CovRecipe>

Options, parameters

Grouping.

If dimension of the final matrix > 100 x 100 Statistical uncertainties: ~smaller (square average) Systematic uncertainties: ~the same (average) Total uncertainties: recalculated from sys. and stat.

Gaps (empty fields in EXFOR).

User defines how to fill in existing gaps (current version: constant)

Energy intervals.

Can be used if experiment had different conditions for the different energy intervals (e.g. different samples were used on the different energy intervals)

Types of correlations [see ENDF Manual, GMA doc]

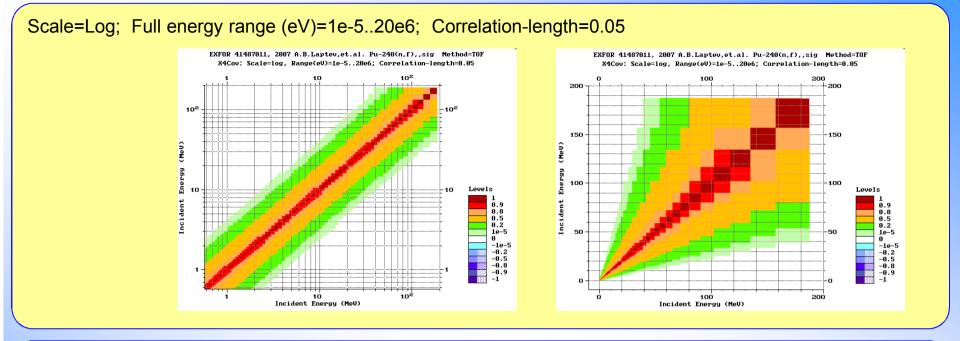
- **SERC:** Short Energy Range Correlations Applicable for uncorrelated data Example: statistical uncertainties
- LERC: Long Energy Range Correlations Applicable for fully-correlated data Example: uncertainties in the determination of mass of the sample
- **MERC:** Medium Energy Range Correlations

Example: uncertainties in detector efficiency

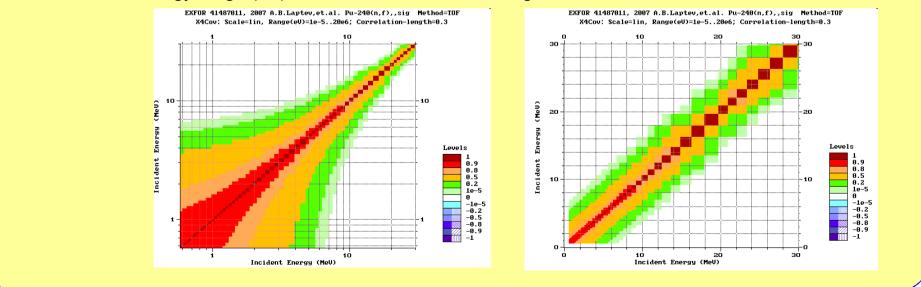
Consolution coefficients, or (E.E.)

Parameters:

1) correlation length energy range of which correlations between data in two energy points disappear

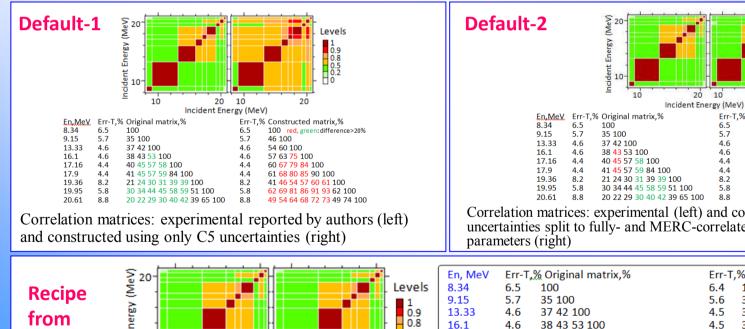

2) scale (Log/Lin):

Log. scale for energy correlations is more common for the time of flight measurements;


Linear scale - for discrete energy source measurements [V.Pronyaev]

L. L	orrelation coefficients: aij(Ei,E	j/	
Uncorrelated SERC (Short Energy Range)	Fully-correlated LERC (Long Energy Range)	Partially-correlated MERC (Medium Energy Range)	Fractional covariance matrix: Cov[i,j] = a[i,j] * Err[i] * Err[j]
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 .7 .4 .1 0 0 0 0 .7 1 .7 .4 .1 0 0 0	SERC: a[i,i]=1; a[i,j]=0 (i≠j)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		LERC: a[i,j]=1
0 0 0 0 1 0 0 0	$\begin{array}{c}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MERC: a[i,j]=a(E _i ,E _i ,scale,length)
0 0 0 0 0 0 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 .1 .4 .7 1 .7 0 0 0 0 .1 .4 .7 1	a[i,j] – coefficient of correlation between data at energies E[i] and E[j] Err[i] – relative uncertainty of given type for given energy E[i]

Examples of MERC parameters



Scale=Lin; Full energy range (eV)=1e-5..20e6; Correlation-length=0.3

Summary. Web Tool for constructing a covariance matrix from EXFOR uncertainties

- Using partial uncertainties (or own assumptions) user defines types of their 1. correlations and calculate full correlation matrix
- The tools provides two default algorithms based on EXFOR definitions of types of 2. uncertainties (generalized in C5), and offers interactive procedure to build more precise matrix using components, offers Web plotting of full matrix and all components, output to ENDF and EXFOR formats; user can store "recipe" and re-use it
- Such tools can be the only way to construct covariance matrices for old data 3.

Correlation matrices: experimental (left) and constructed using C5 uncertainties split to fully- and MERC-correlated uncertainties with default

10

6.5

5.7

46

46

4.4

4.4

8.2

5.8

Levels

0.8

100 red, green: difference>10%

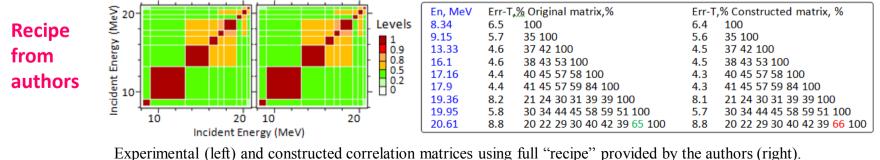
20

Err-T,% Constructed matrix,%

43 100

32 39 100

28 32 58 100


30 33 54 76 100

31 34 50 73 84 100

20 23 27 42 49 54 100

31 35 41 59 70 77 59 100

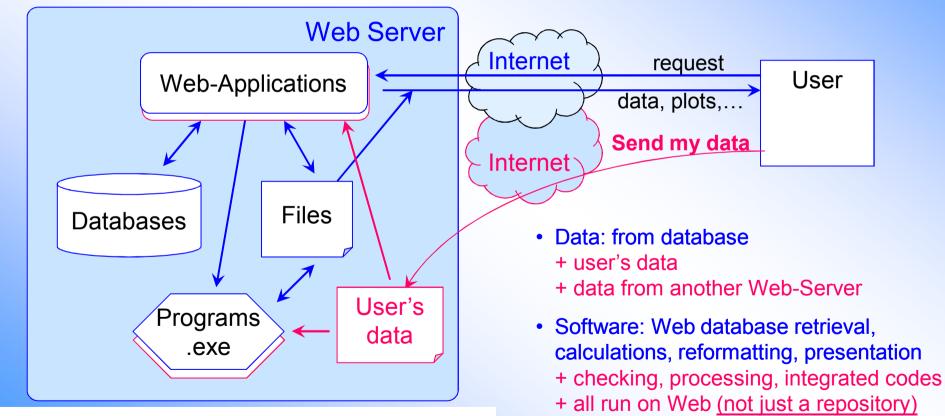
24 27 32 43 51 57 44 70 100

Calling non-interactive software

EXFOR Request #27001/172

Output Data

Forma	ət		<u>Data</u> (Size)
EXFO	R Interprete	d X4+ (32Kb)) Generate: X4± XML:: v1: X4.xml X4.html v2: X4.xml X4.html
EXFO	R Output	X4Out X40)ut.xml X4Comp Test: C5 C5M:see:[doc]
EXFO	R Original	EXFOR (22k	<b) (6kb)<="" th="" zip=""></b)>
Bibliography		html (3Kb)	BibTeX (1Kb)
			C5 = C4 + ErrSys + ErrStat C5M = C5 + correlation matrix
ARIANCE MENT ORITHM ARDATA in (eV)	1) If only 2) Statist 3) Total s 2 Type 1	y total uncertaint. tical uncertainties ystematic uncerta 1 100 Groupping Star 9 9	<pre>er.2012/05/17, by V.Zerkin@iaea.org (IAEA-NDS) sies are given, assume uncertainties: statistical/systematic=50/50. ss ara added to full covariance matrix as uncorrelated components inties are split to (50/50) and added as fully correlated and MERC-correlated compo 50. 50. 0 8340000.0 2.061E7 0.5 st.SERC Syst.LERC Syst.MERC Log/Lin En-Min En-Max Length c.(%) Correlations(%)</pre>
	××- 8340000. 0. 9150000. 0. 1.333E7 0. 1.61E7 0.		> <values: by="" length:="" line="" separated="" space;="" unlimited<br="">100 91 100 58 64 100 48 48 75 100 48 48 66 87 100</values:>

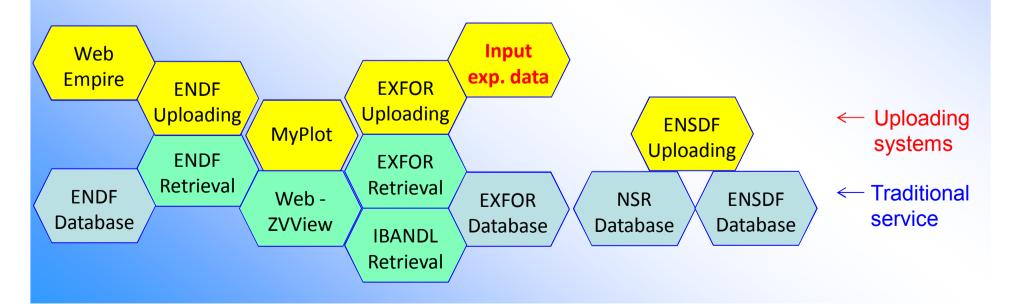

Uploading systems for nuclear data professionals

Processing user's data on Web-Server

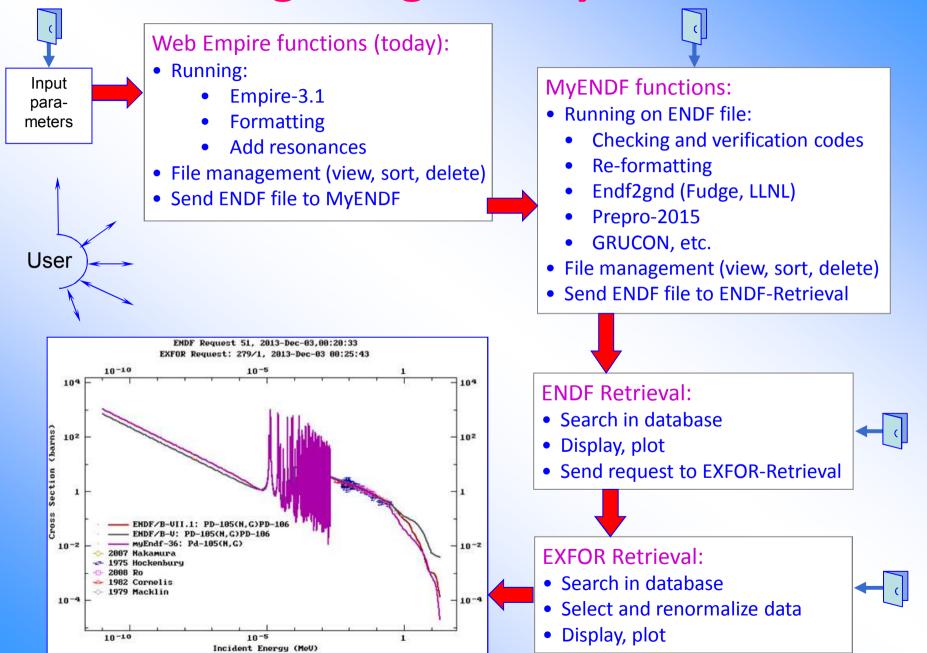
Oriented to nuclear data professionals producing nuclear data

Modern definition: "Cloud computing" / "SaaS" = Software as a Service Other types of cloud computing: IaaS (Infrastructure as a Service: disk space) and PaaS (Platform as a Service)

Structure and basic ideas


Beyond traditional Nuclear Data Services we can offer <u>Nuclear Data Software as a Service</u> oriented to the nuclear data compilers and evaluators

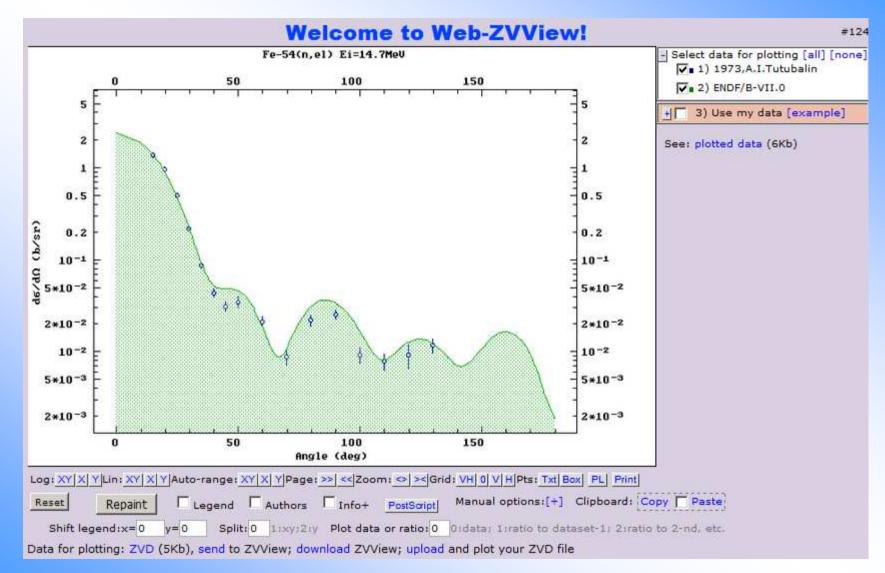
 User's data can be processed together with data from databases


NDS Web server applications

MyPlot	Plotting with Web-ZVView (2009)
MyEXFOR	Uploading System for /EXFOR compilers/ (2010) ZCHEX, ZORDER, XTRACT, X4TOC4; Web-EXFOR
MyENDF	Uploading System (2010-2015)
	CHECKR, FIZCON, STANEF, PSYCHE, INTER, PREPRO, ENDVER, FUDGE, GRUCON, Web-EXFOR-ENDF
MyENSDF	Uploading System (2011-2015)
	FMTCHK, chk_ENSDF, PREPRO, XPQCHK, ALPHAD, GTOL, Brlcc, BrlccMixing, GABS, LOGFT, PANDORA, RADLST, RULER, NDSPUB
EMPIRE-3.1	Web Interface to Empire-3.1 /test-version/ (2013)
MyX4Data	Uploading experimental data as text to EXFOR system for constructing

covariance matrices, plotting, inverse reaction calculations, etc. (2015)

Integrating Web systems

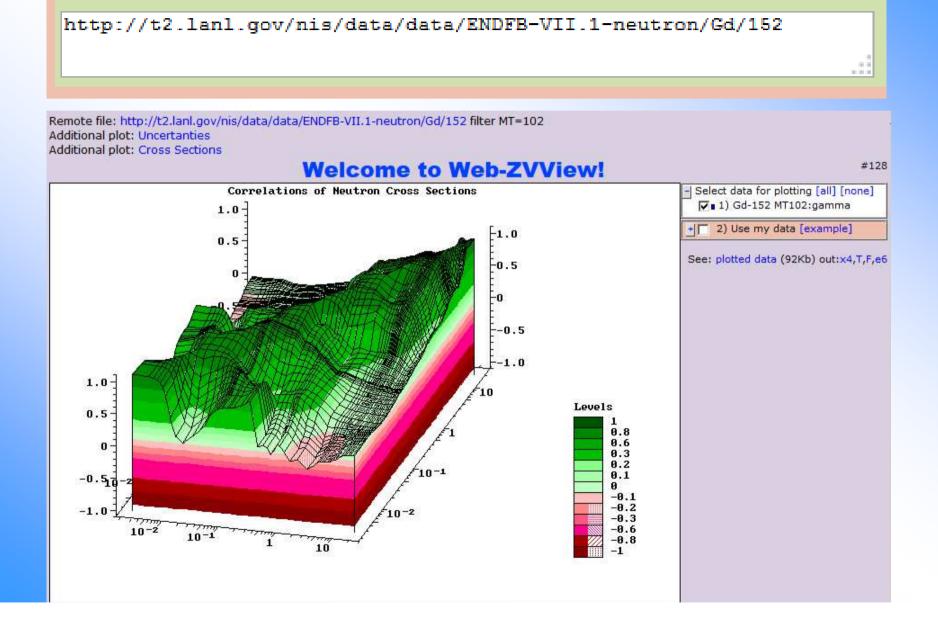


MyPlot: myplot.htm

Uploadii	Plot my data on Web ng data for interactive plotting by Web-ZVView by V.Zerkin, IAEA-NDS, 2009-2015
□ 1) ZVD file: □ 2) ZVD file: + Examples/Help □ 3) Array Y(X) [example	Submit Reset Browse No file selected. Browse No file selected.
X Y ΔY 15 1.39 0.096 20 0.982 0.068 25 0.506 0.037 30 0.223 0.013 35 0.0888 0.0057 40 0.0443 0.0044 45 0.0316 0.004	ΔX Graph Parameters Drawing: Scatter Fill: None Symbol: Circle Color: Blue Line: Solid Thickness: 1 Errors: Bars Error-Fill: None Multiply X: 1 Y: 1 Label: 1973, A.I.Tutubalin
 4) Array Y(X) X Y ΔY 180 0.0019079 175.647 0.0036046 173.94 0.0050829 173.549 0.0054489 171.628 0.0075348 171.163 0.0080453 170.033 0.009363 	ΔX - Graph Parameters Drawing: Lines • Fill: • Symbol: Point • Color: Green • Line: Solid • Thickness: 1 • Errors: Bars • Error-Fill: None • Multiply X: 1 • Y: 1 Label: ENDF/B-VII.0

Submit Sen

Web-ZVView



Input ENDF section of MF33

	Submit	Reset			Correlations of Neutron Cross Sections .0-
-	and the second se				.5
1) ZVD file:	Browse No file select	ed.			0.5
2) ZVD file:	Browse No file select	ed.		-	-0.5
+ Examples/Help				ATT.	
☐ + 3) Array Y(X) [example] ☐ + 4) Array Y(X)					
5) Array Y(X)					10-1
				-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	10-2
T + 7) Matrix Z(X,Y) Dimension: X	:31 Y:31 Z:496 [example	=]			
8) Matrix from ENDF/MF33 [e)	(ample]				
3.307400+4 7.328890+1 0 0.00000+0 0.00000+0 0 0.00000+0 0.00000+0 1 1.00000-5 5.00000+3 7.00000+3 7.00000+4 1.00000+5 2.00000+5 1.00000+6 1.20000+6 1.50000+6 3.00000+6 4.00000+6 5.00000+6 9.00000+6 1.00000+7 1.20000+7	4.000000+5 6.000000+5 8.0	1332233 2 1 1332233 2 2 31332233 2 3 00000+4332233 2 4 00000+5332233 2 5 00000+6332233 2 6 00000+6332233 2 7 00000+6332233 2 8	Graph Paran View: Full Color: Brown Label: MT: all	meters	
 9) Matrix from ENDF/MF33 [ex 10) Matrix from ENDF/MF33: up 		ample]			
Set default plotting parameters: y(>): CS DA DE DAE z(x,y): (COV/SIG			
- Common Plotting Parameters					
Title Correlations of Neutron Cross Section					
X-axis Incident Energy	Scale: Auto -				
Y-axis Incident Energy	Scale: Auto +				
X-units 1e6, (MeV)					
Y-units 1e6, (MeV)					
View 3D-0 🔹					
Style NJOY 🖌					

Input link to Web address

- 9) Matrix from ENDF/MF33 [example] [example] [example]

Uploading ENDF file for checking, plotting, processing

MyENDF: integrated Web-tool for evaluators

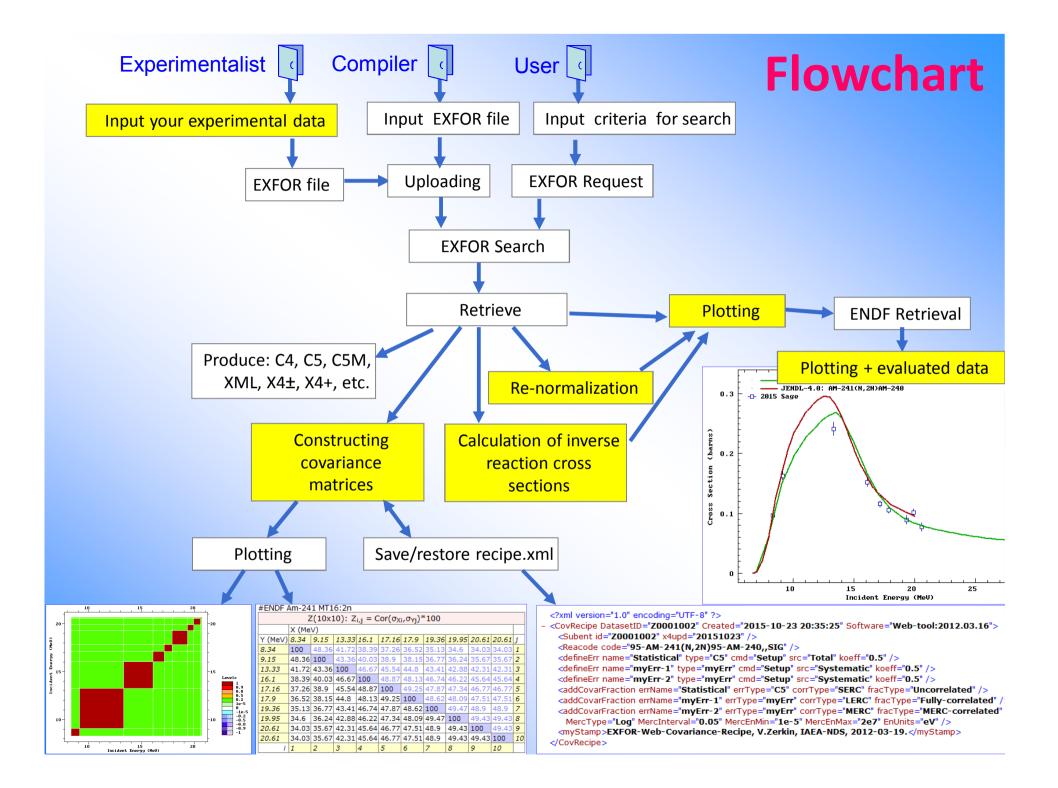
by V.Zerkin, IAEA-NDS, 2010-2015, ver.2015-06-19

Upload your ENDF data file, run remotely ENDF utilities, plot and compare your data with EXFOR and ENDF databases Checkr, Fizcon, Stanef, Psyche, Inter, Prepro, Endver, EXFOR-ENDF-ZVView, Grucon

our ENDF Fil	e: Viktor e: Browse.	., No file	select	ed.								
ENDF,	e.g.: text We	eb:txt e6	b5std	zip CGI	ftp 87.1:	241pu	58Fe 160	238U F	e H ₂ O	176Lu	10B	1
his is my b	ENDF data				1			1	d d	0		Ŧ
7.91970E+4	1.95274E+2	2	q		0	34	6 8	107925	1451	1		
0.0	0.0		0		0	q		67925	1451	1 2 3		
1.00000E+0	3.00000E+'	7	a		0	10	20	027925	1451	3		
3.00000E+2	0.0		1		o	202		67925	1451	4		
79-Au-197	LANL/IRK	EVAL-JAN	84 P.	G.YOUNG,	VONACH	ET AL		7925	1451	5		
		DIST-Feb	2004					7925	1451	6		
IRDF-200	02	MATERIAL	7925					7925	1451	7		
INCIDEN	NT NEUTRON	DATA	10000					7925	1451	8		
ENDF-	5 FORMAT							7925	1451	9		
**********			*****	*******	******	*****	*******	++7925	1451	10		
79-AU-197 1	LANL	EVAL-JAN	84 P.	G.YOUNG				7925	1451	11		
LA-10069-P	2	DIST-SEP	91 RE	V1-JUL91	3		19930129	7925	1451	12		
ENDF/B-V	7I	MATERIAL	7925		REVISI	ON 1		7925	1451	13		
*********			*****	*******	******	*****	********	**7925	1451	14		
	*****EXTR	ACT FOR S	PECIA	L PURPOS	E FILE*	*****	********	**7925	1451	15		
OSIMETRY			ernse - tisk		1000250322			7925	1451	16	-	
			*****	*******			********	++7925	1451	17	1	

Uploading EXFOR /tools for compilers/

Uploa	Web tool for EXFOR compilers ding EXFOR files for checking and comparison with central database by V.Zerkin, IAEA-NDS, 2009-2015, ver.2015-09-17	
	Submit Reset Show details Submit in new Window ame: Viktor File: Browse No file selected.	Useful links -IAEA-NDS -NRDC -EXFOR-We -EXFOR-May -myPlot -myEndf
	below. + Examples text links: txt x4 77 zip CGI covariance: 1 2 3 4 5 II	-myEnsdf
ENTRY SUBENT	32619 950627	-x4ref1*
BIB	10 35	1000000
- CC - C	Fast neutron excitation curve of Al, Ti, V, In and	
	I nuclides	
AUTHOR	(LU HANLIN, WANG DAHAI, CUI YUNFENG, HUANG JIANZHOU, ZHAO WENRONG, FAN PEIGUO, XIA YIJUN, CHEN BAOLIN, MA HONGCHANG, LI JIZHOU)	
REFERENCE	(J,CST, 9, (2),113,7505)	
INSTITUTE	(3CPRAEP)	
FACILITY	(VDG) 2.5 MeV Van De Graaff.	
	(CYCLO) The variable energy cyclotron.	
	(CCW)	
INC-SOURCE	(D-D) The average energy 1.35 and 1.80 MeV deuteron beam from the Van De Graaff bombarding a D-Ti target	
	to generate 4.5 and 5.0 MeV neutrons.	
	The deuteron beam of 3.7 and 5.03 MeV from the cyclo-	
	tron bombarding the solid Ti-D target (thickness=2.04	


Uploading your experimental data

http://www-nds.iaea.org/exfor/x4

🔇 🕀 🖉 Nucl	tomic Energy Agency ear Data Services by the Nuclear Data Section	datat.
	Web tools for plotting user's data	•
	Login: Password: Enter	
by Viktor Zerkin, IAI Last updated: 10/2	A, 22-October-2015 3/2015 12:39:54	
	Input data to Web EXEOR system	
Upl	Input data to Web EXFOR system pading experimental data for interactive construction of covariance matrix by V.Zerkin, IAEA-NDS, 2015, ver-2015-10-23	
	Submit Reset	
Author:		
Reaction:	?	
Method:	?	
Data Examp	les: [1] [2] [3] [4] [5] ption	
х у	Δy input your data below (copy/paste)	
	Submit Reset	
Web Programming: Last updated: 10/23	Viktor Zerkin, NDS, International Atomic Energy Agency (V.Zerkin@iaea.org) /2015 19:29:19	

Input your data to the EXFOR system

Submit Reset											
Author	or: C.Sage, at al.										
Reactio	n: 95-A	AM-241	I(N,2N)95-AM-	240.,SIG		?					
	lethod: TOF										
Method: TOF ? Data Examples: [1] [2] [3] [4] [5] Data description Uncertanties Δy -]+ nn=7											
Var Header Units	: {X} EN MeV Table	•		{∆Y}1 ERR-TOT per-cent ▼ Table ▼	_	IT-ERR 🗾	{ΔY}3 ERR-1 ▼ per-cent ▼ Table ▼	{ΔY}4 ERR-2 ▼ per-cent ▼ Table ▼	{ΔY}5 ERR-7 ▼ per-cent ▼ Table ▼	{ΔY}6 ERR-8 ▼ per-cent ▼ Table ▼	{ΔY}7 ERR-3 ▼ per-cent ▼ Const ▼ 1.2
x y Δy input your data below (copy/paste)											
8.34	96.8	6.5	1.9	5	1	.9	.3				
9.15 13.33	162.9 241.8	5.7 4.6	1.9 1.6	4 2.5	1 1	.6 .4	.3 .3				
16.1	152.4	4.6	2	2.1	1	.6	.3				
17.16	116.1	4.4	2	1.5	1	. 6	. 3				
17.9	105.7	4.4	2.2	1.3	.7	.7	.3				
19.36	89.5	8.2	3.1	6.3	2	. 6	1.3				
19.95 20.61	102.1 77.9	5.8 8.8	4.1 5.4	1.4 5.7	1 1.6	.6	1.4 1.4				
20.01	//.9	0.0	5.4	5.7	1.0	. 0	1.4		.:		
Submit Reset											

Thank you.

Citing of the materials of this presentation should be done with proper acknowledgement of the IAEA and author.