Clearance of radioactive waste from regulatory control

Ian Crossland

Crossland Consulting UK

Workshop on "Radioactive waste management – solutions for countries without nuclear power programme"
 2 – 6 November 2015, ICTP, Miramare – Trieste, Italy

Overview

- Concept of controlling radioactive material in the BSS
 - exclusion
 - exemption
 - clearance
- Approaches to derive exemption and clearance levels
- Practical application of clearance
- Familiarization with the BSS tables
- Waste hierarchy

Basis IAEA Publications

- Safety Standards : Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards INTERIM EDITION, GSR Part 3 (2011)
- IAEA Safety Guide RS-G-1.7, Application of the concepts of exclusion, exemption and clearance (2004)
- IAEA Safety Report 44, Derivation of activity concentration values for exclusion, exemption and clearance (2005)

Ch5 Exemption and clearance Audio file D1_2 Ch5a

IAEA Safety Standards

for protecting people and the environment

Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards

General Safety Requirements Part 3 No. GSR Part 3 (Interim)

Options for Radioactive Material Control

Exclusion

- An exposure that is essentially unamenable to control may be EXCLUDED from regulation
- Examples are exposures from:
 - ⁴⁰K in a (human) body
 - Cosmic radiation on the surface of the earth
 - Unmodified concentrations of radionuclides in most raw materials
 - Gaseous discharge, through a building ventilation system, of radon and associated daughters arising from the ground or construction materials
- All represent entire categories of exposure regardless of exposure, quantity or concentration
 IAEA

Exemption

 Practices and sources within practices can be EXEMPTED from regulatory control (notification, registration or licensing) if the sources meet EXEMPTION CRITERIA ie if:

total activity of a given nuclide present on the premises at any one time

or

the activity concentration used in the practice does not exceed the exemption levels

- Examples: Smoke detectors, use of uranium for colouring glass, thoria for crucibles
- Note: The practice must still be justified

Exemption - Principles

- Radiation risks to individuals are sufficiently low as to be of no regulatory concern
- Collective radiological impact is sufficiently low as not to warrant regulatory control under prevailing circumstances, trivial radiation risk
- The practice or scenario is inherently safe, with no likelihood of scenarios that could lead to a failure to meet the above two principles
- Applies to moderate quantities of material (at most on the order of a tonne)

Trivial Dose

- Corresponds to a dose and a risk level that which have no significant effect as regards to individuals:
 - Annual risks of death below to 10⁻⁶ p.a. are of no concern
 - Corresponds to annual dose level of 20 μ Sv
- Annual exposure to natural background, which is normal and unavoidable, provides a relevant reference level. This is typically a few thousand μSv
- An individual may be exposed to radiation from several exempted practices; it must be ensured that the total dose does not exceed the trivial level
- Therefore, the IAEA recommends 10 μ Sv in a year

Exemption Criteria

- Exemption must meet the following criteria:
 - Effective dose to any member of the public is of the order of 10 μSv or less in a year
 - Collective effective dose committed by one year of performance of the practice is no more than about 1 man-Sv
 - Or
 - An assessment for the optimization of protection shows that exemption is the optimum option

Exemption Levels

- Dose criteria apply to both workers and public
- Exemption Levels given in BSS
 - Based on scenarios using limited amount of material (less than 1 tonne)
 - Expressed in activity concentrations (Bq/g) and total activity (Bq)
- Exempt practices involve small-scale use of radionuclides

Typical levels

Some typical levels for exemption without further				
consideration (BSS 2011)				
	Bq/g	Bq		
Co-60	10	100,000 (2uCi)		
Cs-137	10	10,000		
U-238	10	10,000		
Th-232	10	10,000		
Am-241	1	10,000		

Exemption is intended for small amounts of radioactive material and the practices that use them; invariably, the quantity of radioactive material is less than one tonne

Exemption examples

A glowing gas mantle

Uranium glass

Photos – Wikipedia

UK allows 5kg of U or Th without registration (about 20 MBq cf 10,000 Bq in BSS)

Clearance

- Clearance: removal of radioactive material or objects from any further regulatory control
- BSS: Sources, including substances, materials and objects, within notified authorized practice may be released from further requirements ... subject to complying with clearance levels approved by the Regulatory Authority
- Can be used for recycling and reuse of materials or for disposal to conventional landfill sites (thus avoiding disposal as radioactive waste)

Importance of Clearance Levels

- Reduce the amount of material disposed as waste, thereby reducing cost - consistent with fundamental principles. If criteria are not established - resources will be wasted
- In decommissioning, need clearance criteria to determine when decommissioning is finished (decommissioning endpoint)otherwise a site might never be released from regulatory control

Impacts on National Policy

- Impacts on the amount of material to be disposed of have national repercussions as well as affecting operators
- Absence of clearance criteria can affect the ability to complete decommissioning & perform cleanups
- Inappropriate criteria can result in previouslycleared material becoming the focus for further remediation

Examples for Clearance

- Release of steel from nuclear installation to general scrap metal pool – but not always acceptable to recycling companies
- Release of waste oil from nuclear power plant:
 - Separation of water and oil
 - Filtering
 - Send for recycling
- Release solid hospital waste contaminated by ¹³¹I
 - Allowing the ¹³¹I decay
 - Disposal with other hospital wastes

AEA

Nuclide-Specific Clearance Levels

- Dose criteria are the same as for exemption but for derivation of clearance levels different scenarios are used because greater (potentially much greater) amounts of material are involved (>1 tonne)
- Regulatory body either directly gives or approves clearance levels
- Clearance levels can be generic or defined case-by-case – could depend on the amount and the nature of the material concerned

Establishing Radionuclide-Specific Clearance Levels

Calculating Clearance Levels for Scrap Metal

Derivation of Generic Clearance Levels (RS-G-1.7)

- For artificial radionuclides: use scenarios representing typical exposure situations
 - Using realistic parameter values and a dose criteria of 10 μSv/a
 - Using low probability parameter values and a dose criteria of 1 mSv/a
 - Dose criteria to the skin of 50 mSv in a year
- Values developed for naturally occurring radionuclides based on worldwide distribution of activity concentrations by UNSCEAR (2000)
- Not applicable to food and drinking water (use Codex Alimentarius / WHO recommendations)

Typical Clearance Levels

Nuclide	Bq/g
H-3	100
C-14	1
Mn-54	0.1
Fe-59	1
Co-60	0.1
Ni-59	100
Sr-90	1
Tc-99	1
I-131	10
Cs-137	0.1
Eu-154	0.1
Pu-238	0.1
Am-241	0.1

Clearance Procedures

- Clearance using general clearance levels derived / approved by the regulatory body.
- Competent operator: activity measurements reliable, records kept, quality assurance in place, clearance plans given to the regulatory body.
- Reporting (e.g. annual information of amount and activity of cleared materials to the regulatory body)
- Case by case clearance:
 - No general clearance levels in place or
 - The general clearance levels are exceeded
 A case/site specific assessment has to be carried out

Practical Application of Clearance

- Locate clearance instruments in low-background area
- Have process knowledge of the material (where did it come from, and its chain of custody)
- Non-porous materials are much easier to clear
- Clearance levels are set on a volumetric and surface contamination basis
- Material that is suspected to be alphacontaminated is difficult to clear

Clearance examples

Redundant steam generator arriving for decontamination and metal processing Photo courtesy Studsvik

BSS Table 1-1

TABLE I-1: LEVELS FOR EXEMPTION OF MODERATE AMOUNTS OF MATERIAL WITHOUT FURTHER CONSIDERATION: EXEMPT ACTIVITY CONCENTRATIONS AND EXEMPT ACTIVITIES OF RADIONUCLIDES (see footnotes 57 and 58)

Radionuclide	Activity concentration (Bq/g)	Activity (Bq)
H-3	1×10^{6}	1×10^{9}
Cs-137ª	1×10^{1}	1×10^{4}
U-238ª	1×10^{1}	1×10^{4}

Cs-137 decay

Lecture 2-3 - Concepts of Exemption and Clearance

BSS Table 1-2

TABLE I-2. LEVELS FOR EXEMPTION OF BULK AMOUNTS OF SOLID MATERIAL WITHOUT FURTHER CONSIDERATION AND FOR CLEARANCE OF SOLID MATERIAL WITHOUT FURTHER CONSIDERATION: ACTIVITY CONCENTRATIONS OF RADIONUCLIDES OF ARTIFICIAL ORIGIN (see footnote 58)

concentration (Bq/g)
100
0.1
Not present

AEA

TABLE I-3: LEVELS FOR CLEARANCE OF MATERIAL: ACTIVITY CONCENTRATIONS OF RADIONUCLIDES OF NATURAL ORIGIN

Radionuclide	Activity concentration (Bq/g)
K-40	10
Each radionuclide in the uranium and thorium decay chains	1
decay chams	

Waste hierarchy

Preparing for re-use

Recycling

Other recovery

Disposal

Summary

- Exclusion is removal of entire types of materials from regulatory control (based on unamenability to control)
- Exemption / clearance of specific quantities of materials based on trivial risk (de-minimis)
- Levels for exemption and clearance without further consideration are listed in the BSS (downloadable)
- Exclusion, exemption and clearance provide a fundamental basis for waste segregation strategies
- Clearance levels are much lower than exemption

