PROBLEM LIST 1. CHAIN-RECURRENCE AND HYPERBOLICITY.

SYLVAIN CROVISIER AND RAFAEL POTRIE SCHOOL ON DYNAMICAL SYSTEMS, ICTP, JULY 2015

- Prove the equivalence between the two definitions of the chain-recurrent set.
 Hint: for *x* ∈ *M* and ε > 0, consider the set of points *y* such that there exists a ε-pseudo-orbit *z*₀,...,*z_n*, *n* ≥ 1, from *x* to *y*.
- (2) Prove the equivalence between: (1) each chain-recurrence class is hyperbolic; (2) the chain-recurrent set is a finite union of hyperbolic sets.
- (3) Prove that the hyperbolic diffeomorphisms have only finitely many chain-recurrence classes and that each of them is transitive.
- (4) Check that the set of hyperbolic diffeomorphism is open in $\text{Diff}^1(M)$.
- (5) Prove that the hyperbolic diffeomorphisms are the diffeomorphisms which satisfy the Axiom A and the No-cycle Condition:
 - (a) $\Omega(f)$ is a finite union of hyperbolic sets.
 - (b) Per(f) is dense in $\Omega(f)$.
 - (c) Consider transitive sets $K_0, K_1, ..., K_n = K_0$ in $\Omega(f)$ such that for each *i*, there exists a heteroclinic orbit from K_i to K_{i+1} . Then all the K_i are contained in a same transitive set.
- (6) Any continuous linear bundle $E \subset T_K M$ over a compact set $K \subset M$ admits a continuous extension to a neighborhood of K.
- (7) Consider a diffeomorphism f, an invariant compact set K and a continuous splitting $T_K M = E \oplus F$ which is preserved by f. Prove that K is hyperbolic if and only if for any invariant probability measure supported on K, the upper Lyapunov exponent along E is negative and the lower Lyapunov exponent along F is positive.