PROBLEM LIST 3. INVARIANT MANIFOLDS. ## SYLVAIN CROVISIER AND RAFAEL POTRIE SCHOOL ON DYNAMICAL SYSTEMS, ICTP, JULY 2015 - (1) Let $f \in \text{Diff}^1(M)$ be a globally partially hyperbolic diffeomorphism with a splitting $TM = E^s \oplus E^c$ such that $\dim E^s = 1$. - (a) Use Peano's existence theorem for differential equations to show that every point $x \in M$ is contained in a curve η_x everywhere tangent to E^s . - (b) Deduce that there exists a foliation tangent to E^s which is invariant by f. - (2) Consider a surface diffeomorphism which preserves a C^1 -circle C. Assume $T_CM = E \oplus E^s$ is dominated. - (a) Prove that *E* is tangent to *C*. - (b) Prove that for any diffeomorphism g that is C^1 -close to f, there exists an invariant C^1 -circle C_g that is C^1 -close to C. - (3) Let $f \in \text{Diff}^1(M)$ be a globally partially hyperbolic diffeomorphism with a splitting $TM = E^s \oplus E^c \oplus E^u$ such that dim $E^c = 1$ and γ be a closed arc tangent to E^c . Show that the saturation of γ by local strong stable manifolds $$D = \bigcup_{x \in \gamma} W^{ss}_{loc}(x)$$ is an embedded C^1 -submanifold tangent to $E^s \oplus E^c$.