PROBLEM LIST 3. INVARIANT MANIFOLDS.

SYLVAIN CROVISIER AND RAFAEL POTRIE SCHOOL ON DYNAMICAL SYSTEMS, ICTP, JULY 2015

- (1) Let $f \in \text{Diff}^1(M)$ be a globally partially hyperbolic diffeomorphism with a splitting $TM = E^s \oplus E^c$ such that $\dim E^s = 1$.
 - (a) Use Peano's existence theorem for differential equations to show that every point $x \in M$ is contained in a curve η_x everywhere tangent to E^s .
 - (b) Deduce that there exists a foliation tangent to E^s which is invariant by f.
- (2) Consider a surface diffeomorphism which preserves a C^1 -circle C. Assume $T_CM = E \oplus E^s$ is dominated.
 - (a) Prove that *E* is tangent to *C*.
 - (b) Prove that for any diffeomorphism g that is C^1 -close to f, there exists an invariant C^1 -circle C_g that is C^1 -close to C.
- (3) Let $f \in \text{Diff}^1(M)$ be a globally partially hyperbolic diffeomorphism with a splitting $TM = E^s \oplus E^c \oplus E^u$ such that dim $E^c = 1$ and γ be a closed arc tangent to E^c .

Show that the saturation of γ by local strong stable manifolds

$$D = \bigcup_{x \in \gamma} W^{ss}_{loc}(x)$$

is an embedded C^1 -submanifold tangent to $E^s \oplus E^c$.